Teori graf | sedikit lebih formal

Sedikit lebih formal

Suatu graf G, dinotasikan sebagai , merupakan pasangan V dan E, di mana V merupakan himpunan tak kosong berisikan simpul pada graf tersebut dan E merupakan himpunan sisi pada graf tersebut. Secara formal, himpunan E dapat dinyatakan sebagai suatu koleksi subhimpunan berkardinalitas dua dari himpunan V, atau dalam notasi matematika . Sebagai contoh, graf pada gambar di atas dapat dinyatakan sebagai graf di mana E = { { 1 , 2 } , { 1 , 5 } , { 2 , 3 } , { 3 , 4 } , { 4 , 5 } , { 5 , 2 } , { 4 , 6 } } {\displaystyle E=\ .

Gambar dengan node yang sama dengan yang di atas, tetapi merupakan digraf.

Pada digraf maka pasangan-pasangan ini merupakan pasangan terurut. Untuk menyatakan digraf (gambar kedua yang menggunakan tanda panah) kita dapat menggunakan himpunan edge sebagai berikut :

Dalam himpunan edge untuk digraf, urutan pasangan verteks menentukan arah dari edge tersebut.

Dalam teori graf, formalisasi ini untuk memudahkan ketika nanti harus membahas terminologi selanjutnya yang berhubungan dengan graph. Beberapa terminologi berhubungan dengan teori graf :

  • Degree atau derajat dari suatu node, jumlah edge yang dimulai atau berakhir pada node tersebut. Node 5 berderajat 3. Node 1 berderajat 2.
  • Path suatu jalur yang ada pada graph, misalnya antara 1 dan 6 ada path
  • Cycle siklus ? path yang kembali melalui titik asal 2 kembali ke 2.
  • Tree merupakan salah satu jenis graf yang tidak mengandung cycle. Jika edge f dan a dalam digraf di atas dihilangkan, digraf tersebut menjadi sebuah tree. Jumlah edge dalam suatu tree adalah nV - 1. Dimana nV adalah jumlah vertex
  • Graf Tak Berarah (Undirected Graph) Graf G disebut graf tak berarah (undirected graph) jika setiap sisinya tidak berarah. Dengan kata lain (vi,vj)=(vj,vi)
  • Graf Berarah (Directed Graph) Graf G disebut graf berarah (directed graph) jika setiap sisinya berarah. Titik awal dari suatu sisi disebut verteks awal (initial vertex) sedangkan titik akhir dari suatu sisi disebut verteks akhir (terminal vertex). Loop pada graf adalah sisi yang verteks awal dan verteks akhirnya sama.
En otros idiomas
አማርኛ: ሥነ ግራፍ
беларуская: Тэорыя графаў
čeština: Teorie grafů
dansk: Grafteori
Ελληνικά: Θεωρία γράφων
English: Graph theory
Esperanto: Grafeteorio
euskara: Grafo teoria
íslenska: Netafræði
日本語: グラフ理論
한국어: 그래프 이론
lietuvių: Grafų teorija
latviešu: Grafu teorija
монгол: Графын онол
Bahasa Melayu: Teori graf
Nederlands: Grafentheorie
norsk nynorsk: Grafteori
norsk: Grafteori
português: Teoria dos grafos
sicilianu: Tiuria dî grafi
srpskohrvatski / српскохрватски: Teorija grafova
Simple English: Graph theory
slovenčina: Teória grafov
slovenščina: Teorija grafov
српски / srpski: Теорија графова
svenska: Grafteori
Türkçe: Çizge teorisi
українська: Теорія графів
Tiếng Việt: Lý thuyết đồ thị
中文: 图论
粵語: 圖論