Système de positionnement par satellites | principe de fonctionnement

Principe de fonctionnement

Un système de positionnement par satellites fournit sur un récepteur les coordonnées géographiques en trois dimensions (longitude, latitude, hauteur ellipsoïdale), la vitesse de déplacement et la date / heure à son utilisateur. Ces informations sont calculées à partir des mesures de distance à un instant donné entre le récepteur de l'utilisateur et plusieurs satellites artificiels dont les positions dans l'espace sont connues avec précision. En combinant la mesure simultanée de la distance d'au moins quatre satellites, le récepteur est capable par multilatération de fournir la position et l'altitude avec une précision de l'ordre du mètre, la vitesse avec une précision de quelques cm/s et le temps avec une précision atomique. La précision dépend de très nombreux facteurs, dont la qualité du récepteur, le mode de calcul et l'environnement proche. En termes de position, elle peut descendre à quelques millimètres pour un récepteur de type géodésique bi-fréquence utilisant la phase des signaux jusqu'à plusieurs dizaines, voire centaines de mètres pour un récepteur bas de gamme en environnement urbain dense. Le récepteur peut être au sol ou embarqué positionné dans un véhicule en déplacement : automobile, navire, avion.

Par abus de langage, il est souvent fait référence au GPS alors que la plupart des téléphones modernes embarquent de fait des puces de type GNSS capables d’utiliser plusieurs constellations simultanément[2].

Détermination de la trajectoire du satellite

Pour mesurer la distance entre le récepteur et le satellite, la trajectoire précise de ce dernier doit être connue. Celle-ci est reconstituée à partir de deux types de messages envoyés par le satellite au récepteur :

  • les données d'almanach sont transmises en permanence et fournissent la position approximative des satellites de navigation dans le ciel. Elles permettent au récepteur de repérer rapidement les satellites visibles depuis la position de son utilisateur ;
  • les données d'éphémérides fournissent des données de position beaucoup plus précises qui sont actualisées périodiquement (toutes les 4 à 6 heures pour le système GPS) afin de tenir compte des plus petits changements affectant l'orbite des satellites. Ce sont ces données qui sont utilisées pour le calcul de la position.

Détermination de l'heure

Connaissant la trajectoire que suit le satellite, le récepteur, pour calculer la position, doit théoriquement utiliser la même heure que le satellite. En effet, compte tenu de la vitesse à laquelle circule le signal (300 000 km/s), une désynchronisation de 10 millisecondes entre l'horloge du satellite et celle du récepteur engendre une erreur de calcul de la position de 3 000 km. La précision et la stabilité de l'heure du satellite est garantie par l'emport de plusieurs horloges atomiques qui fournissent une heure qui ne dérive que de quelques nanosecondes par jour. Le récepteur, par contre, ne peut être équipé d'une horloge aussi précise pour des raisons de coût et d'encombrement. L'heure est fournie par un oscillateur à quartz dont la dérive journalière moyenne est de 10 millisecondes. Lors du calcul de la position, le décalage entre le temps du récepteur et le temps des satellites est traité comme une inconnue et calculé en même temps que les coordonnées du récepteur.

Calcul de la position

Pour déterminer sa position, sa vitesse et l'heure, le récepteur calcule la distance à laquelle se trouve le satellite à partir des données de l'éphéméride et en se basant sur son horloge interne. Mais ce calcul est entaché d'erreurs (on parle de pseudo-distance) du fait principalement de la désynchronisation des horloges mais également parce que différents phénomènes physiques viennent perturber la propagation du signal, dont les principaux sont listés ci-dessous :

  • l'éphéméride n'est pas parfaitement exacte ;
  • malgré sa très haute performance, l'horloge du satellite est néanmoins entachée d'une légère erreur ;
  • le signal est ralenti durant sa traversée de l'atmosphère (ionosphère et troposphère) de manière variable ;
  • le signal peut être réfléchi par des objets au sol (bâtiments) avant d'atteindre le récepteur, on parle alors de « multi-trajets » ;
  • enfin en milieu urbain, en montagne ou dans une région boisée le signal peut être bloqué.

La méthode de trilatération permet théoriquement de calculer position, vitesse et temps en utilisant le signal de trois satellites : la distance à laquelle se situe un satellite positionne l'utilisateur à la surface d'une sphère dont le centre est le satellite. L'intersection de 3 sphères permet d'identifier un point unique dans l'espace. Un quatrième satellite au minimum est néanmoins requis pour permettre de déterminer le décalage des horloges et réduire les incertitudes liées aux autres sources de perturbation du signal, on parle alors de multilatération. Dans la réalité, le récepteur utilise le maximum de satellites dont il reçoit correctement le signal et calcule la solution qui lui semble « optimale », c'est-à-dire la plus vraisemblable en fonction des erreurs estimées sur chaque pseudo-distance.

Augmentation du signal

Pour améliorer les performances de précision et garantir des performances minimales associées à un certain facteur de risque (notion d’intégrité), des signaux supplémentaires peuvent être émis par des satellites ou des balises terrestres de correction, appelés systèmes d'augmentation.

Interface avec des applications

Le récepteur GNSS strictement dit, dont la seule fonction est de calculer la position et la vitesse, est souvent couplé à d'autres composants (calculateur, écran…) qui fournissent à l'utilisateur des fonctions de navigation, par exemple la détermination de la route à suivre pour rejoindre un point de coordonnées connues ou le calcul du trajet routier optimal pour se rendre d'un point A à un point B, avec la fourniture des indications nécessaires au conducteur à chaque endroit stratégique. Le récepteur peut également (principalement en navigation aérienne) être interfacé à d'autres moyens de navigation : centrale inertielle, autres senseurs de bord (compas, tachymètre, autres systèmes de radionavigation…) pour augmenter ses performances et la disponibilité de la position finale.

Dans le cas du suivi de flotte, le récepteur peut aussi être couplé à un moyen de télécommunication : téléphone cellulaire ou satellitaire, liaison UHF ou VHF, qui retransmet automatiquement la position du mobile à un central. Ce central peut alors contrôler, gérer ou surveiller le déplacement des mobiles.

Enfin, dans le contexte de l'Internet mobile, c'est-à-dire de la géolocalisation sur smartphones, les applications faisant usage du positionnement satellitaire sont absolument innombrables et se caractérisent toutes par le couplage du positionnement avec la communication cellulaire, c'est-à-dire généralement par une remontée des positions aux serveurs des applications, pour le meilleur ou le pire…

Other Languages
estremeñu: Sistema de guia
Bahasa Indonesia: Sistem navigasi satelit
Nederlands: Satellietnavigatie
Simple English: Satellite navigation
Tiếng Việt: GNSS