ජ්‍යාමිතිය
English: Geometry

කැලබි - යාවු සමූදාය

(Geometry - ග්‍රීක භාෂාවට අනුව geo යනු පොළව ද metria යනු මිණුම යන්නයි)ජ්‍යාමිතිය යනු අවකාශයේ ගුණ සමඟ සහ රූපවල හැඩය, විශාලත්වය හා සාපේක්ෂ පිහිටීම පිළිබඳ ගැටළු හා බැඳී පවතින ගණිතයෙහි කොටසකි. ජ්‍යාමිතිය පැරණිතම විද්‍යාවලින් එකකි. මුලින්ම ජ්‍යාමිතිය යනු දිග , වර්ගඵලය හා පරිමාව සැලකිල්ලට ගත් ප්‍රායෝගික දැනුම් සම්භාරයක් විය. පසුව ක්‍රිස්තු පූර්ව තෙවන ශත වර්ෂයේ දී යුක්ලීඩ් ජ්‍යාමිතිය ඉදිරිපත් කළ යුක්ලීඩ් විසින් ජ්‍යාමිතිය ස්වයං ප්‍රත්‍යක්ෂ්‍ය ආකාරයක් බවට පත් කරන ලද අතර ශත වර්ෂ ගණනකට භාවිතා කළ හැකි සම්මතයක් ගොඩ නැඟීය. නක්ෂත්‍රයේ දී, විශේෂයෙන් අවකාශ ගෝලයේ ඇති තාරකා හා ග්‍රහ ලෝකවල පිහිටීම් අනුරූපණය කිරීමේ දී අර්ධ සහස්‍ර කාලය තුළ දී ජ්‍යාමිති ප්‍රශ්න සැපයීමේ වැදගත් ප්‍රභවයක් විය. රෙනේ ඩෙකාර්ට් (Rene Descartes) විසින් ඛණ්ඩාංක හඳුන්වාදීම සහ සමකාලීනව සිදු වූ වීජ ගණිතයේ දියුණුවත් සමඟ තලීය වක්‍ර වැනි ජ්‍යාමිතික හැඩයක් විශ්ලේෂණාත්මක ලෙස ශ්‍රිත හා සමීකරණවලින් නිරූපණය කළ හැකි වීම නිසා ජ්‍යාමිතියට නව මුහුණුවරක් සනිටුහන් විය. මෙය 17 වන ශත වර්ෂයේ දී කලනයේ නිර්මාණය වීමේ දී වැදගත් කාර්යයක් ඉටු කළේය. තවදුරටත් රූපවල ප්‍රමිතික ගුණවලට දෙයක් වඩා ජ්‍යාමිතියෙහි ඇතුළත් පර්යාලෝක සිද්ධාන්තය මඟින් පෙන්වයි. ඉයුලර් සහ ගවුසිස් සමඟ සිදු කළ ජ්‍යාමිතික වස්තූන්වල නිසඟ ව්‍යුහ අධ්‍යයනය මඟින් ජ්‍යාමිතිය තව දුරටත් සාරවත් වූ අතර එය අවකල ජ්‍යාමිතිය සහ ස්ථල විද්‍යාව නිර්මාණය වීමට හේතු විය.19 වන ශත වර්ෂයේ යුක්ලීඩියානු නොවන ජ්‍යාමිතිය සොයා ගැනීමෙන් පසු අවකාශය පිළිබඳ සංකල්පය, විප්ලවකාරී පරිවර්තනයකට ලක් විය. නූතන ජ්‍යාමිතිය මඟින් සලකනු ලබන සමූදාය හුරු පුරුදු යුක්ලීඩියානු අවකාශයට වඩා වියුක්ත අවකාශ කුඩා පරිමාණවලදී පමණක් ආසන්නව සමානව පවතී. මෙම අවකාශ අයෙකුට දුර පිළිබඳ කතා කිරීමට ඉඩ සලස්වමින් ආකලන ව්‍යුහ සමඟම පවරා දිය හැකිය.

භෞතික විද්‍යාව හා නවීන ජ්‍යාමිතිය ශක්තිමත් බැඳීම් ගණනාවකින් බැඳී ඇත. රීමන් ජ්‍යාමිතිය හා සාමාන්‍ය සාපේක්ෂතාව අතර බැඳීම මඟින් මෙය වඩාත් තහවුරු කරයි. භෞතික විද්‍යාවේ නවතම ප්‍රමේයයක් වන තන්තු සිද්ධාන්තය අතිශයින් ජ්‍යාමිතික වේ. ජ්‍යාමිතියෙහි දෘශ්‍ය ස්වභාවය , එය වීජ ගණිතය හා අංක සිද්ධාන්ත වැනි ගණිතයෙහි අනෙකුත් කොටස්වලට වඩා පහසුවෙන් ප්‍රවේශ විය හැකි අංශයක් බවට පත් කරයි. කෙසේ නමුත් යුක්ලීඩ් සාධනවලින් බොහෝ කලක සිට ඉවත් කළ සංදර්භයන් හි පවා ජ්‍යාමිතික භාෂාව භාවිතා වේ. නිදසුන් ලෙස භාගික ජ්‍යාමිතිය හා විශේෂයෙන් වීජීය ජ්‍යාමිතිය දැක්විය හැක.

  • ඉතිහාසය

ඉතිහාසය

යුක්ලීඩ්ගේ “Element” ග්‍රන්තයේ මධ්‍යතන යුගයේ පරිවර්තනයෙන් ආරම්භයේ වූ කාන්තාවක් ජ්‍යාමිතිය උගන්වන චිත්‍රයක්

දැනට පවතින වාර්තාවන්ට අනුව ජ්‍යාමිතියෙහි මූලාරම්භය ක්‍රි.පූ. 3000 දී පමණ ඉන්දු නිම්න ශිෂ්ටාරය , ඊජිප්තුව හා මෙසපොතේමියාව ආශ්‍රිතව සිදු වූ බව සොයාගෙන ඇත. ආරම්භක අවධියේ ජ්‍යාමිතිය දිග , කෝණ , ක්ෂේත්‍ර හා පරිමාවන් පිළිබද ප්‍රත්‍යක්ෂ මුලිකව සොයාගන්නා ලද මූලධර්මයන්වල එකතු‍වක් වු අතර ඒවා මිනුම් කටයුතු, ඉදිකිරීම්, තාරකා විද්‍යා සහ වෙනත් විවිධ ක්ෂේත්‍රයන්හි ප්‍රායෝගිව යොදාගැනීම සඳහා නිර්මාණය කරන ලද මූලධර්ම විය. ඊජිප්තු රයින්ඩ් පැපිරස් සහ මොස්කව් පැපිරස් ද , බැබිලෝනියානු මැටි පුවරු සහ ඉන්දියනු ශුල්බා සූත්‍ර ද ජ්‍යාමිතිය පිළිබද දැනට සොයාගෙන ඇති ඉපැරණිම ප්‍රකාශන වේ. සමකාලීනව චීන ජාතික මොසී, ශැන්ග් හා හෙන්ග් විසින් කළ සොයාගැනීම් ද , ලියූ යුසි විසින් ලියන ලද “Nine Chapters on the Mathematical Art” (ගණිතමය විග්‍රණය පිළිබඳ පරිච්ඡේද නවයක්) යන ග්‍රන්ථය ද චීනයේ භාවිතා විය.

යුක්ලීඩ්ගේ “The Elements of Geometry” (ජ්‍යාමිතියේ අංගයක්) නම් ග්‍රන්ථය මුල් යු‍ගයේ ජ්‍යාමිතිය සම්බන්ධව පලවූ ග්‍රන්ථ අතරින් වැදගත් ස්ථානයක් හිමි කරගනී. ක්‍රි.පු 300 දී පමණ පළවූ මෙම ග්‍රන්ථය ඔස්සේ ජ්‍යාමිතිය පරමාදර්ශි සංසිද්ධ ආකාරයකට ඉදිරිපත් කිරීමට යුක්ලීඩ් කටයුතු කළ අතර ඒ ඔස්සේ යුක්ලීඩියානු ජ්‍යාමිතිය සිදු විය. ඇතැමුන් වරදවා වටහාගෙන ඇති අයුරට මෙම ශාස්ත්‍රීය ග්‍රන්ථය එකල ග්‍රීක ගණිතඥයින් ජ්‍යාමිතිය පිළිබඳ දත් කරුණුවල එකතුවක් නොවූ අතර එය ජ්‍යාමිතියට මූලික හැඳින්වීමක් පමණක් විය. යුක්ලීඩ් විසින්ම තවත් වඩාත් සංකීර්ණ ග්‍රන්ථ 8ක් ජ්‍යාමිතිය අලලා පල කිරීමෙන් ඒ බව පැහැදිලි වේ. ජ්‍යාමිතිය අලලා පල කළ ප්‍රථම ග්‍රන්ථය යුක්ලීඩ්ගේ ග්‍රන්ථයක් නොවන බව විවිධ සාධක ඔස්සේ මේ වන විට ඔප්පු වී තිබේ. එහෙත් අපහරණයට ලක්වීමත් නොසැල්ලකිල්ලට භාජනය වීමත් නිසා යුක්ලීඩ් යුගයට පෙර ලියූ ග්‍රන්ථ කිසිවක් සොයාගත නොහැකි වී තිබේ.

ජ්‍යාමිතියේ විශේෂයෙන්ම විජීය ජ්‍යාමිතයේ හා ජ්‍යාමිතික වීජ ගණිතයේ ප්‍රගමනය සදහා මධ්‍යතන යුගයේ දී මුස්ලිම් ගණිතඥයින් විසින් විශාල කාර්ය භාරයක් ඉටු කරන ලදී. අල් මහානි (853) නම් ගණිතඥයා විසින් ගණකයක් ද්වි ගුණ කිරිම වැනි ජ්‍යාමිතික ගැටළු වීජ ගණිතමය ගැටළු බවට ඌනනය කළ හැකි බව හදුනාගන්නා ලදී. කබිට් ඉබන් ක්වරා (ලතින් භාෂාවෙන් තෙබිට්) (836-901) ජ්‍යාමිතික අගයන්ට ආදේශිත අංක ගණිතමය ක්‍රියාවලීන් පිළිබද පරීක්ෂණ කළ අතර විශ්ලේෂණ ජ්‍යාමිතියේ මූලික වර්ධනයට දායකත්වය දැක්විය. ඕමාර් ක්හැයිම් (1048-1131) ඝණජ සමීකරණ සදහා ජ්‍යාමිතික විසදුම් ලබාගත් අතර ඔහුගේ සමාන්තර උප ග්‍රහණයන් පිළිබඳ ගැඹුරු අධ්‍යයනයන් යුක්ලීඩියානු නොවන ජ්‍යාමිත‍ියේ මූලාරම්භයට දායකත්වය සැපයීය.

17 වැනි සියවසේ මුල් කාලයේ දී ජ්‍යාමිතිය සම්බන්ධ වැදගත් ප්‍රගමන යුගලක් සිදු වන මින් වඩාත් වැදගත් වන්නේ රේනේ ඩෙස්කාටේස් (1596-1650) යන ෆයරේ ඩි ෆර්මැට් (1601-1665) විසින් ඛණ්ඩාංක සහ සමීකරණ වලින් යුත් විශ්ලේෂණ ජ්‍යාමිතිය නම් ක්ෂේත්‍රය නිර්මාණය කිරීමයි. මෙම නව ක්ෂේත්‍රය පසු කාලීන කුලකයේ සහ නිත්‍ය ප්‍රමාණාත්මක විද්‍යාවක් වූ භෞතික විද්‍යාවේ දියුණුවට අත්‍යාවශ්‍ය විය. දෙවැනි වැදගත් සිද්ධිය වූයේ ගිරාජ් ඩෙසාගස් (1591-1661) විසින් ක්‍රමානුකූලව ප්‍රක්ෂේපි ජ්‍යාමිතිය අධ්‍යයනය කිරීමයි. ප්‍රක්ෂේපී ජ්‍යාමිතියේ දී මිනුම්වලින් තොරව ලක්ෂ්‍ය එකිනෙක සමඟ පෙළ ගැසෙන ආකාරය පමණක් අධ්‍යයනය කරනු ලැබේ.

19 වැනි සියවසේ දී ජ්‍යාමිතිය ආශ්‍රිතව සිදු වූ වැදගත් සිදුවීම් යුගලක් එතෙක් ජ්‍යාමිතිය අධ්‍යයනය කළ ආකාරය නව මගකට යොමු ‍කළේය. මින් පළමුවැන්න වූයේ ලොබැකෙවිස්කි , බෝලේ හා ගෝස් විසින් යුක්ලීඩියානු ‍නොවන ජ්‍යාමිතිය සොයාගැනීමයි. දෙවැන්න ෆීලික්ස් ක්ලේන් විසින් එලැන්ගන් වැඩසටහනේ කේන්ද්‍රීය සැලකීම ලෙස සමමිතිය හදුන්වාදීමයි. ‍(මෙමඟින් යුක්ලීඩියානු හා යුක්ලිඩියානු නොවන ජ්‍යාමිතීන් සාධාරණීකරණය කරන ලදී) මෙකල විසූ ජ්‍යාමිතිය පිළිබද පතාක යෝධයන් යුගල වූයේ බර්නාඩ් රීමන් සහ හෙන්රි පොයිංකෙරේය. රීමන් විසින් ගණිතමය විශ්ලේෂණ උපක්‍රම පමණක් යොදා ගනිමින් රීමන් පෘෂ්ටය හදුන්වාදෙන ලද අතර‍ පොයිකරේ විසින් ගණිතමය පද්ධති පිළිබද ජ්‍යාමිතික වාදය සහ වීජීය ස්ථල විද්‍යාව හදුන්වාදෙන ලදී. මෙම වෙනස්කම්වල ප්‍රතිඵලයක් ලෙස ජ්‍යාමිතිය පිළිබද සංකල්පය විශාල වෙනසකට බදුන් වු අතර “අවකාශය” පිළිබඳ සංකල්පය පිරුණු සහ විවිධ ආකාර‍යක් ගත්තේය. මෙම තත්වය සංකීර්ණ විශ්ලේෂණය සහ ප්‍රතිෂ්ටික යාන්ත්‍ර විද්‍යාව වැනි විවිධ විෂය ක්ෂේත්‍රයන්ට පසුබිමක් සැපයීය. පුරාතන ආකාර ජ්‍යාමිතිය සමජාතීය අවකාශ හා බැඳුනක් ලෙසට මෙකල හදුනාගන්නා ලදී. සමජාතීය අවකාශ යනු ප්‍රමාණවත් සමමිතියක් පැවතීම එකිනෙකට වෙනස් ලක්ෂ මත දී එකම ආකාරයෙන් පෙනෙන අවකාශ වේ.

Other Languages
Afrikaans: Meetkunde
Alemannisch: Geometrie
አማርኛ: ጂዎሜትሪ
aragonés: Cheometría
العربية: هندسة رياضية
অসমীয়া: জ্যামিতি
asturianu: Xeometría
azərbaycanca: Həndəsə
تۆرکجه: هندسه
башҡортса: Геометрия
žemaitėška: Geuometrėjė
беларуская: Геаметрыя
беларуская (тарашкевіца)‎: Геамэтрыя
български: Геометрия
भोजपुरी: ज्यामिति
Bislama: Jiometri
বাংলা: জ্যামিতি
বিষ্ণুপ্রিয়া মণিপুরী: জ্যামিতি
brezhoneg: Mentoniezh
bosanski: Geometrija
буряад: Геометри
català: Geometria
کوردی: ئەندازە
čeština: Geometrie
Чӑвашла: Геометри
Cymraeg: Geometreg
dansk: Geometri
Deutsch: Geometrie
Zazaki: Geometri
Ελληνικά: Γεωμετρία
emiliàn e rumagnòl: Geometrî
English: Geometry
Esperanto: Geometrio
español: Geometría
eesti: Geomeetria
euskara: Geometria
estremeñu: Geometria
فارسی: هندسه
suomi: Geometria
føroyskt: Geometri
français: Géométrie
Nordfriisk: Geometrii
贛語: 幾何學
Gàidhlig: Geoimeatras
galego: Xeometría
ગુજરાતી: ભૂમિતિ
客家語/Hak-kâ-ngî: Kí-hò-ho̍k
עברית: גאומטריה
हिन्दी: ज्यामिति
Fiji Hindi: Geometry
hrvatski: Geometrija
Kreyòl ayisyen: Jewometri
magyar: Geometria
interlingua: Geometria
Bahasa Indonesia: Geometri
Interlingue: Geometrie
Ilokano: Heometria
íslenska: Rúmfræði
italiano: Geometria
日本語: 幾何学
Patois: Jaamichri
ქართული: გეომეტრია
Qaraqalpaqsha: Geometriya
Taqbaylit: Tanzeggit
Kabɩyɛ: Siiŋ lɩzʊʊ
қазақша: Геометрия
ភាសាខ្មែរ: ធរណីមាត្រ
ಕನ್ನಡ: ರೇಖಾಗಣಿತ
한국어: 기하학
kurdî: Geometrî
Кыргызча: Геометрия
Latina: Geometria
Lëtzebuergesch: Geometrie
Lingua Franca Nova: Jeometria
Limburgs: Maetkónde
Ligure: Geometria
lumbaart: Geometrìa
lingála: Zomɛtɛlí
lietuvių: Geometrija
latviešu: Ģeometrija
Malagasy: Jeometria
олык марий: Геометрий
македонски: Геометрија
മലയാളം: ജ്യാമിതി
монгол: Геометр
मराठी: भूमिती
Bahasa Melayu: Geometri
Mirandés: Geometrie
မြန်မာဘာသာ: ဂျီဩမေတြီ
Plattdüütsch: Geometrie
नेपाली: ज्यामिति
नेपाल भाषा: रेखागणित
Nederlands: Meetkunde
norsk nynorsk: Geometri
norsk: Geometri
Novial: Geometria
occitan: Geometria
ଓଡ଼ିଆ: ଜ୍ୟାମିତି
ਪੰਜਾਬੀ: ਰੇਖਾ ਗਣਿਤ
polski: Geometria
Piemontèis: Geometrìa
پنجابی: جیومیٹری
português: Geometria
Runa Simi: Pacha tupuy
română: Geometrie
русский: Геометрия
русиньскый: Ґеометрія
саха тыла: Геометрия
sicilianu: Giometrìa
Scots: Geometry
سنڌي: جاميٽري
srpskohrvatski / српскохрватски: Geometrija
Simple English: Geometry
slovenčina: Geometria
slovenščina: Geometrija
chiShona: Pimachisi
Soomaaliga: Joomitiri
shqip: Gjeometria
српски / srpski: Геометрија
Seeltersk: Geometrie
Sunda: Élmu ukur
svenska: Geometri
Kiswahili: Jiometri
ślůnski: Geometryjo
తెలుగు: రేఖాగణితం
тоҷикӣ: Геометрия
Türkmençe: Geometriýa
Tagalog: Heometriya
Türkçe: Geometri
Xitsonga: Tinhlayo-vupimi
татарча/tatarça: Геометрия
тыва дыл: Геометрия
українська: Геометрія
اردو: ہندسہ
oʻzbekcha/ўзбекча: Geometriya
vèneto: Giometria
Tiếng Việt: Hình học
Winaray: Heyometriya
吴语: 几何学
ייִדיש: געאמעטריע
中文: 几何学
文言: 幾何
Bân-lâm-gú: Kí-hô-ha̍k
粵語: 幾何學