Korlátos halmaz

A matematikai analízis és kapcsolódó területei korlátosnak neveznek egy halmazt, ha annak kiterjedése valamilyen értelemben véges.

Általánosan, de pontosan (értelmesen) topologikus módszerekkel lehet megfogalmazni. Egy elég általános definíció a következő:

Egy H részhalmaz korlátos egy (M, d) metrikus térben, ha a halmazt tartalmazza egy véges sugarú gömb. Vagy másképpen fogalmazva, ha létezik és úgy, hogy minden -ra .

Ekkor a H halmaz átmérőjének a véges

értéket nevezzük. Ha H zárt, akkor ez az érték felvétetik, azaz van olyan H-beli x és y pont, aminek a távolsága pontosan ennyi (más szóval, a szuprémum ilyenkor maximum).

M egy korlátos metrikus tér (vagy d egy korlátos metrika), ha M korlátos részhalmaza saját magának.

Számegyenes

A valós számok egy H részhalmaza felülről korlátos, ha van olyan K valós szám, hogy minden esetén .

A halmaz alulról korlátos, ha van olyan k, amelyre minden esetén .

Egy valós számhalmaz korlátos, ha mind alulról, mind pedig felülről korlátos. Ez ekvivalens azzal, hogy a halmaz egy véges intervallum részhalmaza.

Más nyelveken
English: Bounded set
العربية: مجموعة محاطة
català: Conjunt fitat
Esperanto: Barita aro
español: Acotado
français: Partie bornée
íslenska: Takmarkað mengi
日本語: 有界
한국어: 유계 집합
Nederlands: Begrensdheid
português: Conjunto limitado
українська: Обмежена множина
中文: 有界集合
文言: 有界