אלומה (מתמטיקה)

במתמטיקה, אלומהצרפתית: Faisceau, באנגלית: Sheaf) היא אמצעי המאפשר לרכז מידע על תכונות מקומיות של מרחב, כדי להשוות אותן לתכונות הגלובליות שלו. האלומה מוגדרת על מרחב טופולוגי X, ומתאימה לכל קבוצה פתוחה U מידע כלשהו (המידע יכול להיות קבוצה, חבורה, חוג, מודול או אלגברה). האקסיומות שאלומה נדרשת לקיים מבטיחות שהמידע המקומי יהיה מאורגן באופן רציף.

לעיתים קרובות האלומה מתארת מבנים גאומטריים המוגדרים על קבוצות קטנות יחסית של המרחב, כגון פונקציות רציפות, תבניות דיפרנציאליות וכן הלאה. מקורו של הסימון המקובל, , הוא המלה הצרפתית לאלומה - Faisceau.

האלומות הופיעו במתמטיקה לראשונה בהקשר של המשכה אנליטית של פונקציות מרוכבות, ובהמשך הפכו לאבן יסוד בפיתוחה של הגאומטריה האלגברית המודרנית; האובייקטים הבסיסיים של הגאומטריה האלגברית המודרנית (סכמות) מוגדרים בשפה של אלומות. אלומות שימושיות במיוחד בגאומטריה (במיוחד גאומטריה דיפרנציאלית וגאומטריה אלגברית) ובטופולוגיה.

Other Languages