Nombre de Fermat

Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom.

Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn.

Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32. On ne sait pas si les nombres à partir de F33 sont premiers ou composés. Les seuls nombres de Fermat premiers connus sont donc F0, F1, F2, F3 et F4.

Les nombres de Fermat disposent de propriétés intéressantes, en général issues de l'arithmétique modulaire. En particulier, le théorème de Gauss-Wantzel établit un lien entre ces nombres et la construction à la règle et au compas des polygones réguliers : un polygone régulier à n côtés peut être construit à la règle et au compas si et seulement si n est une puissance de 2, ou le produit d'une puissance de 2 et de nombres de Fermat premiers distincts.

Dans d'autres langues
Ænglisc: Fermat tæl
العربية: عدد فيرما
azərbaycanca: Ferma ədədləri
Deutsch: Fermat-Zahl
Ελληνικά: Αριθμός Φερμά
English: Fermat number
Esperanto: Nombro de Fermat
עברית: מספר פרמה
հայերեն: Ֆերմայի թիվ
한국어: 페르마 수
Nederlands: Fermatgetal
norsk nynorsk: Fermattal
Piemontèis: Nùmer ëd Fermat
português: Número de Fermat
русский: Число Ферма
Simple English: Fermat number
slovenščina: Fermatovo praštevilo
svenska: Fermattal
українська: Числа Ферма
Tiếng Việt: Số Fermat
中文: 費馬數