Virgo interferometer

The Virgo experiment
Member countries of the Virgo scientific collaboration.svg
  Founding members
  Acceded members
MottoListening to the cosmic whisper
TypeInternational scientific collaboration
PurposeGravitational wave detection
Coordinates43°37′53″N 10°30′16″E / 43°37′53″N 10°30′16″E / 43.6313; 10.5045

The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumentation are suspended and its laser beam operates in a vacuum. The instrument's two arms are three kilometres long and located in Santo Stefano a Macerata, near the city of Pisa, Italy.

Virgo is part of a scientific collaboration of laboratories from six countries: Italy and France, the Netherlands, Poland, Hungary and Spain. Other interferometers similar to Virgo have the same goal of detecting gravitational waves, including the two LIGO interferometers in the United States (at the Hanford Site and in Livingston, Louisiana). Since 2007, Virgo and LIGO have agreed to share and jointly analyze the data recorded by their detectors and to jointly publish their results.[1] Because the interferometric detectors are not directional (they survey the whole sky) and they are looking for signals which are weak, infrequent, one-time events, simultaneous detection of a gravitational wave in multiple instruments is necessary to confirm the signal validity and to deduce the angular direction of its source.

The interferometer is named for the Virgo Cluster of about 1,500 galaxies in the Virgo constellation, about 50 million light-years from Earth. As no terrestrial source of gravitational wave is powerful enough to produce a detectable signal, Virgo must observe the Universe. The more sensitive the detector, the further it can see gravitational waves, which then increases the number of potential sources. This is relevant as the violent phenomena Virgo is potentially sensitive to (coalescence of a compact binary system, neutron stars or black holes; supernova explosion; etc.) are rare: the more galaxies Virgo is surveying, the larger the probability of a detection.


The Virgo project was approved in 1993 by the French CNRS and in 1994 by the Italian INFN, the two institutes at the origin of the experiment. The construction of the detector started in 1996 in the Cascina site near Pisa, Italy.

In December 2000,[2] CNRS and INFN created the European Gravitational Observatory (EGO consortium), later joined by the Netherlands, Poland, Hungary and Spain. EGO is responsible for the Virgo site, in charge of the construction, the maintenance and the operation of the detector, as well as of its upgrades. The goal of EGO is also to promote research and studies about gravitation in Europe. By December 2015, 19 laboratories plus EGO were members of the Virgo collaboration.

In the 2000s, the "initial" Virgo detector was built, commissioned and operated. The instrument reached its design sensitivity to gravitational wave signals. This long-term endeavour allowed the technical choices made to build Virgo to be validated; it also showed that giant interferometers are promising devices to detect gravitational waves in a wide frequency band.[3][4] However, the initial Virgo detector was not sensitive enough to achieve such a detection. Therefore, it was decommissioned from 2011 in order to be replaced by the "advanced" Virgo detector which aims at increasing its sensitivity by a factor of 10. The advanced Virgo detector benefits from the experience gained on the initial detector and from technological advances since it was made.

The construction of the initial Virgo detector was completed in June 2003[5] and several data taking periods followed between 2007 and 2011.[6] Some of these runs were done in coincidence with the two LIGO detectors. Then a long upgrade to the second generation detector, called Advanced Virgo, started; its aim is to reach a sensitivity one order of magnitude better than the initial Virgo detector, allowing it to probe a volume of the Universe 1,000 times larger, making detections of gravitational waves more likely.

Advanced Virgo started commissioning in 2016, joining the two advanced LIGO detectors ("aLIGO") for a first "engineering" observing period in May and June 2017.[7] On 14 August 2017, LIGO and Virgo detected a signal, GW170814, which was reported on 27 September 2017. It was the first binary black hole merger detected by both LIGO and Virgo.[8]