Spontaneous generation

Spontaneous generation refers to an obsolete body of thought on the ordinary formation of living organisms without descent from similar organisms. The theory of spontaneous generation held that living creatures could arise from nonliving matter and that such processes were commonplace and regular. For instance, it was hypothesized that certain forms such as fleas could arise from inanimate matter such as dust, or that maggots could arise from dead flesh.[1] A variant idea was that of equivocal generation, in which species such as tapeworms arose from unrelated living organisms, now understood to be their hosts. The idea of univocal generation, by contrast, refers to effectively exclusive reproduction from genetically related parent(s), generally of the same species.

The doctrine of spontaneous generation was coherently synthesized by Aristotle,[2] who compiled and expanded the work of earlier natural philosophers and the various ancient explanations for the appearance of organisms, and was taken as scientific fact for two millennia. Though challenged in the 17th and 18th centuries by the experiments of Francesco Redi and Lazzaro Spallanzani, spontaneous generation was not disproved until the work of Louis Pasteur and John Tyndall in the mid-19th century.[3]

Pasteur invented the swan-necked flask to create an environment known not to grow microorganisms. After sterilizing a nutrient broth in these flasks, he removed the swan necks of the controls. Microorganisms grew only in the controls, refuting spontaneous generation.[1]

Rejection of spontaneous generation is no longer controversial among biologists. By the middle of the 19th century, experiments of Louis Pasteur and others refuted the traditional theory of spontaneous generation and supported biogenesis.[4][5][6]

Description and terms

Spontaneous generation refers both to the supposed processes by which different types of life might repeatedly emerge from specific sources other than seeds, eggs, or parents, and also to theoretical principles presented in support of any such phenomena. Crucial to this doctrine are the ideas that life comes from non-life and that no causal agent, such as a parent, is needed. The hypothetical processes by which life routinely emerges from nonliving matter on a time scale of minutes, weeks, or years (e.g. in the supposed seasonal generation of mice and other animals from the mud of the Nile) are sometimes referred to as abiogenesis.[7] Such ideas have no operative principles in common with the modern hypothesis of abiogenesis, which asserts that life emerged in the early ages of the planet, over a time span of at least millions of years, and subsequently diversified, and that there is no evidence of any subsequent repetition of the event.[8]

The term equivocal generation, sometimes known as heterogenesis or xenogenesis, describes the supposed process by which one form of life arises from a different, unrelated form, such as tapeworms from the bodies of their hosts.[9]

In the years following Louis Pasteur's 1859 experiment, the term "spontaneous generation" fell increasingly out of favor. Experimentalists used a variety of terms for the study of the origin of life from nonliving materials. Heterogenesis was applied to the generation of living things from once-living organic matter (such as boiled broths), and Henry Charlton Bastian proposed the term archebiosis for life originating from inorganic materials. Disliking the randomness and unpredictability implied by the term "'spontaneous' generation," in 1870 Bastian coined the term biogenesis to refer to the formation of life from nonliving matter. Soon thereafter, however, English biologist Thomas Henry Huxley proposed the term abiogenesis to refer to this same process and adopted biogenesis for the process by which life arises from existing life; it is this latter set of definitions that became dominant.[10]

Other Languages