Scotia Plate

Scotia Plate
Scotia Plate Tectonic Map
TypeMinor
Approximate area1,651,000 km2 (637,000 sq mi)[1]
Movement1West
Speed125mm/year
FeaturesScotia Sea, South Georgia, Drake Passage
1Relative to the African Plate

The Scotia Plate (Spanish: Placa Scotia) is a tectonic plate on the edge of the South Atlantic and Southern Ocean. Thought to have formed during the early Eocene with the opening of the Drake Passage that separates South America from Antarctica,[2] it is a minor plate whose movement is largely controlled by the two major plates that surround it: the South American plate and Antarctic plate.[3]

Roughly rhomboid, extending between 50°S 70°W / 50°S 70°W / -50; -70 and 63°S 20°W / 63°S 20°W / -63; -20, the plate is 800 km (500 mi) wide and 3,000 km (1,900 mi) long. It is moving WSW at 2.2 cm (0.87 in)/year and the South Sandwich Plate is moving east at 5.5 cm (2.2 in)/year in an absolute reference frame.[4] It takes its name from the steam yacht Scotia of the Scottish National Antarctic Expedition (1902–04), the expedition that made the first bathymetric study of the region.[5]

The Scotia Plate is made of oceanic crust and continental fragments now distributed around the Scotia Sea. Before the formation of the plate began 40 million years ago (40Ma), these fragments formed a continuous landmass from Patagonia to the Antarctic Peninsula along an active subduction margin.[4] At present the plate is almost completely submerged, with only the small exceptions of the South Georgia Islands on its northeastern edge and the southern tip of South America.[6]

Tectonic setting

Bathymetric map of Scotia Plate
The Scotia plate (SCO) bounded by the South Sandwich plate (SAN), Antarctic plate (ANT), South American plate (SAM) and the Shetland plate, seen just above the Antarctic Peninsula (AP).

Together with the Sandwich Plate, the Scotia Plate joins the southernmost Andes to the Antarctic Peninsula, just like the Caribbean Plate joins the northernmost Andes to North America, and these two plates are comparable in several ways. Both have volcanic arcs at their eastern ends, the South Sandwich Islands on the Sandwich Plate and the Lesser Antilles on the Caribbean Plate, and both plates also had a major impact on global climate when they closed the two major gateways between the Pacific and Atlantic Oceans during the Mesozoic and Cenozoic.[5]

North Scotia Ridge

The northern edge of the Scotia plate is bounded by the South American plate, forming the North Scotia Ridge. The North Scotia ridge is a left-lateral, or sinistral, transform boundary with a transform rate of roughly 7.1 mm/yr.[7] The Magallanes–Fagnano Fault is passing through Tierra del Fuego.

The northern ridge stretches from Isla de los Estados off Tierra del Fuego in the west to the microcontinent South Georgia in the east, with a series of shallow banks in between: Burdwood, Davis, Barker, and Shag Rocks. North of the ridge is the 3 km (1.9 mi) deep Falkland Trough.[8]

South Georgia microcontinent

Experts in plate tectonics have been unable to determine whether the South Georgian Islands are part of the Scotia plate or have been recently accreted to the South American plate. Surface expressions of the plate boundary are found north of the islands suggesting a long-term presence of the transform fault there. Yet seismic studies have identified strain and thrusting south of the islands indicating the possible shift of the transform fault to an area south of the island. It has also been suggested that the plate bearing the islands may have broken off from the Scotia plate, forming a new independent South Georgia microplate, yet there is little evidence to make this conclusion.[9]

The South Georgia microcontinent was originally connected to the Roca Verdes back-arc basin (southern-most Tierra del Fuego) until the Eocene. Before that, this basin went through a series of geological transformations during the Cretaceous, through which South Georgia was first buried, then made a topographic feature again by the Late Cretaceous. At about 45 Ma, South Georgia, still part of the South American Plate, got buried again and something, possibly rotation of the Fuegian Andes, completed the break-up and allowed South Georgia a second exhumation. During the Oligocene (34–23 Ma) South Georgia was reburied again as seafloor spreading took place in the West Scotia Sea. 10 Ma, finally, the South Georgia microcontinent was uplifted as a result of the collision with the Northeast Georgia Rise.[10]

South Scotia Ridge

The southern edge of the plate is bordered by the Antarctic plate, forming the South Scotia Ridge, a left-lateral transform boundary sliding at a rate of roughly 7.4–9.5 mm/yr that occupies the southern half of the Antarctic-Scotia plate boundary.[7] The relative motion between the Scotia plate and the Antarctic plate on the western boundary is 7.5–8.7 mm/yr.[7] Though the South Scotia Ridge is overall a transform fault, small sections of the ridge are spreading to make up for the somewhat jagged shape of the boundary.[6]

At the eastern tip of the Antarctic Peninsula, the beginning of South Scotia Ridge, a small and heavily dissected bank degenerates into several outcrops dominated by Paleozoic and Cretaceous rocks. A small basin, Powel Basin, separates this cluster from the South Orkney microcontinent composed of Triassic and younger rocks.

The eastern continuation of the ridge, the Scotia Arc east of the South Sandwich Plate, are the South Sandwich island arc and trench. This volcanic active island arc has submerged ancestors in Jane and Discovery banks in the southern ridge.[8]

Shackleton Fracture Zone

The western edge of the plate is bounded by the Antarctic plate, forming the Shackleton Fracture Zone and the southern Chile Trench. The Southern Chile Trench is a southern extension of the subduction of the Antarctic and Nazca plates below South America. Heading south along the ridge, the subduction rate decreases until its remaining oblique motion evolves into the Shackleton Fracture Zone transform boundary. The south-western edge of the plate is bounded by the Shetland microplate separating the Shackleton Fracture Zone and the South Scotia Ridge.[6]

North of South Shetland Islands and along the southern half of the Shackleton Fracture Zone is the remnant of the Phoenix Plate (also known as Drake or Aluk Plate). Around 47 Ma the subduction of the Phoenix Plate started as the propagation of the Pacific-Antarctic Ridge continued. The last collision between Phoenix ridge segments and the subduction zone was 6.5 Ma and at 3.3 Ma movements had stopped and the remnants of the Phoenix Plate was incorporated into the Antarctic Plate. The southern part of the Shackleton Fracture Zone is the former eastern edge of the Phoenix Plate.[11]

East Scotia Ridge

The eastern edge of the Scotia plate is a spreading ridge bounded by the South Sandwich microplate, forming the East Scotia Ridge.[12] The East Scotia Ridge is a back-arc spreading ridge that formed due to subduction of the South American plate below the South Sandwich plate along the South Sandwich Island arc. Exact spreading rates are still being disputed in the literature, but it has been agreed that rates range between 60–90 mm/yr.[13]

The banks of northern Central Scotia Sea are superposed on oceanic basement and the spreading centre of the West Scotia Sea. Analyses of samples of volcaniclastic rocks from these sites indicate they are constructs of a continental arc and in some cases oceanic arc similar to those being formed in the currently active South Sandwich Arc. The oldest volcanic arc activity in the central and eastern regions of the Scotia Sea are 28.5 Ma. The South Sandwich forarc originated in the Central Scotia Sea at that time but has since been translated eastward by the back-arc spreading centre of the East Scotia Ridge.[14]

Other Languages
azərbaycanca: Skotiya plitəsi
български: Плоча Скотия
Boarisch: Scotia-Blattn
Deutsch: Scotia-Platte
español: Placa Scotia
euskara: Scotia plaka
français: Plaque Scotia
한국어: 스코샤판
Nederlands: Scotiaplaat
português: Placa de Scotia
русский: Скоша (плита)
srpskohrvatski / српскохрватски: Skošanska ploča
svenska: Scotiaplattan
українська: Плита Скотія
Tiếng Việt: Mảng Scotia