Printing press

Recreated Gutenberg press at the International Printing Museum, Carson, California

A printing press is a device for applying pressure to an inked surface resting upon a print medium (such as paper or cloth), thereby transferring the ink. It marked a dramatic improvement on earlier printing methods in which the cloth, paper or other medium was brushed or rubbed repeatedly to achieve the transfer of ink, and accelerated the process. Typically used for texts, the invention and global spread of the printing press was one of the most influential events in the second millennium.[1][2]

Johannes Gutenberg, a goldsmith by profession, developed, circa 1439, a printing system by adapting existing technologies to printing purposes, as well as making inventions of his own. Printing in East Asia had been prevalent since the Tang dynasty,[3][4] and in Europe, woodblock printing based on existing screw presses was common by the 14th century. Gutenberg's most important innovation was the development of hand-molded metal printing matrices, thus producing a movable type based printing press system. His newly devised hand mould made possible the precise and rapid creation of metal movable type in large quantities. Movable type had been hitherto unknown in Europe. In Europe, the two inventions, the hand mould and the printing press, together drastically reduced the cost of printing books and other documents, particularly in short print runs.

The printing press spread within several decades to over two hundred cities in a dozen European countries.[5] By 1500, printing presses in operation throughout Western Europe had already produced more than twenty million volumes.[5] In the 16th century, with presses spreading further afield, their output rose tenfold to an estimated 150 to 200 million copies.[5] The operation of a press became synonymous with the enterprise of printing, and lent its name to a new medium of expression and communication, "the press".[6]

In Renaissance Europe, the arrival of mechanical movable type printing introduced the era of mass communication, which permanently altered the structure of society. The relatively unrestricted circulation of information and (revolutionary) ideas transcended borders, captured the masses in the Reformation and threatened the power of political and religious authorities. The sharp increase in literacy broke the monopoly of the literate elite on education and learning and bolstered the emerging middle class. Across Europe, the increasing cultural self-awareness of its peoples led to the rise of proto-nationalism, and accelerated by the development of European vernacular languages, to the detriment of Latin's status as lingua franca.[7] In the 19th century, the replacement of the hand-operated Gutenberg-style press by steam-powered rotary presses allowed printing on an industrial scale.[8]

History

Economic conditions and intellectual climate

Medieval university class (1350s)

The rapid economic and socio-cultural development of late medieval society in Europe created favorable intellectual and technological conditions for Gutenberg's improved version of the printing press: the entrepreneurial spirit of emerging capitalism increasingly made its impact on medieval modes of production, fostering economic thinking and improving the efficiency of traditional work-processes. The sharp rise of medieval learning and literacy amongst the middle class led to an increased demand for books which the time-consuming hand-copying method fell far short of accommodating.[9]

Technological factors

Technologies preceding the press that led to the press's invention included: manufacturing of paper, development of ink, woodblock printing, and distribution of eyeglasses.[10] At the same time, a number of medieval products and technological processes had reached a level of maturity which allowed their potential use for printing purposes. Gutenberg took up these far-flung strands, combined them into one complete and functioning system, and perfected the printing process through all its stages by adding a number of inventions and innovations of his own:

Early modern wine press. Such screw presses were applied in Europe to a wide range of uses and provided Gutenberg with the model for his printing press.

The screw press which allowed direct pressure to be applied on flat-plane was already of great antiquity in Gutenberg's time and was used for a wide range of tasks.[11] Introduced in the 1st century AD by the Romans, it was commonly employed in agricultural production for pressing wine grapes and (olive) oil fruit, both of which formed an integral part of the mediterranean and medieval diet.[12] The device was also used from very early on in urban contexts as a cloth press for printing patterns.[13] Gutenberg may have also been inspired by the paper presses which had spread through the German lands since the late 14th century and which worked on the same mechanical principles.[14]

Gutenberg adopted the basic design, thereby mechanizing the printing process.[15] Printing, however, put a demand on the machine quite different from pressing. Gutenberg adapted the construction so that the pressing power exerted by the platen on the paper was now applied both evenly and with the required sudden elasticity. To speed up the printing process, he introduced a movable undertable with a plane surface on which the sheets could be swiftly changed.[16]

Movable type sorted in a letter case and loaded in a composing stick on top

The concept of movable type was not new in the 15th century; movable type printing had been invented in China during the Song dynasty, and was later used in Korea during the Goryeo Dynasty, where metal movable-type printing technology was developed in 1234.[3][4] In Europe, sporadic evidence that the typographical principle, the idea of creating a text by reusing individual characters, was well understood and employed in pre-Gutenberg Europe had been cropping up since the 12th century and possibly before. The known examples range from Germany (Prüfening inscription) to England (letter tiles) to Italy.[17] However, the various techniques employed (imprinting, punching and assembling individual letters) did not have the refinement and efficiency needed to become widely accepted.

Gutenberg greatly improved the process by treating typesetting and printing as two separate work steps. A goldsmith by profession, he created his type pieces from a lead-based alloy which suited printing purposes so well that it is still used today.[18] The mass production of metal letters was achieved by his key invention of a special hand mould, the matrix.[19] The Latin alphabet proved to be an enormous advantage in the process because, in contrast to logographic writing systems, it allowed the type-setter to represent any text with a theoretical minimum of only around two dozen different letters.[20]

Another factor conducive to printing arose from the book existing in the format of the codex, which had originated in the Roman period.[21] Considered the most important advance in the history of the book prior to printing itself, the codex had completely replaced the ancient scroll at the onset of the Middle Ages (500 AD).[22] The codex holds considerable practical advantages over the scroll format; it is more convenient to read (by turning pages), is more compact, less costly, and, in particular, unlike the scroll, both recto and verso could be used for writing − and printing.[23]

A paper codex of the acclaimed 42-line Bible, Gutenberg's major work

A fourth development was the early success of medieval papermakers at mechanizing paper manufacture. The introduction of water-powered paper mills, the first certain evidence of which dates to 1282,[24] allowed for a massive expansion of production and replaced the laborious handcraft characteristic of both Chinese[25] and Muslim papermaking.[26] Papermaking centres began to multiply in the late 13th century in Italy, reducing the price of paper to one sixth of parchment and then falling further; papermaking centers reached Germany a century later.[27]

Despite this it appears that the final breakthrough of paper depended just as much on the rapid spread of movable-type printing.[28] It is notable that codices of parchment, which in terms of quality is superior to any other writing material,[29] still had a substantial share in Gutenberg's edition of the 42-line Bible.[30] After much experimentation, Gutenberg managed to overcome the difficulties which traditional water-based inks caused by soaking the paper, and found the formula for an oil-based ink suitable for high-quality printing with metal type.[31]

Other Languages
Afrikaans: Drukpers
العربية: آلة الطباعة
aragonés: Imprenta
asturianu: Imprenta
বাংলা: ছাপাখানা
беларуская (тарашкевіца)‎: Друкарскі варштат
български: Печатна преса
català: Impremta
čeština: Tiskařský lis
dansk: Trykpresse
Deutsch: Druckpresse
español: Imprenta
Esperanto: Presmaŝino
فارسی: چاپ فشاری
Frysk: Drukparse
galego: Imprenta
贛語: 印刷機
한국어: 인쇄기
հայերեն: Տպագրահաստոց
हिन्दी: मुद्रणालय
hrvatski: Tiskarski stroj
Bahasa Indonesia: Mesin cetak
íslenska: Prentvél
मराठी: छापखाना
Nederlands: Drukpers
occitan: Estampariá
ਪੰਜਾਬੀ: ਛਾਪਾਖ਼ਾਨਾ
Papiamentu: Imprenta
Patois: Printin pres
português: Prensa móvel
sicilianu: Stampa
Simple English: Printing press
سنڌي: ڇاپخانو
српски / srpski: Штампарска машина
srpskohrvatski / српскохрватски: Štamparska mašina
suomi: Painokone
Türkçe: Baskı makinesi
اردو: مطبعہ
Tiếng Việt: Máy in ép
Winaray: Imprenta
粵語: 印書盤
中文: 印刷机