** Mathematics** is the study of

A homotopy from a circle around a sphere down to a single point. Image credit: |

The **homotopy groups of spheres** describe the different ways *n*-dimensional sphere, ** n-sphere**, consists of all the points in a space of

The goal of algebraic topology is to categorize or classify *c*-sphere into a space as a way to probe the structure of that space. An obvious question was how this new tool would work on *n*-spheres themselves. No general solution to this question has been found to date, but many homotopy groups of spheres have been computed and the results are surprisingly rich and complicated. The study of the homotopy groups of spheres has led to the development of many powerful tools used in algebraic topology.

** Anscombe's quartet** is a collection of four sets of bivariate data (paired

- ... that according to
Kawasaki's theorem , anorigami crease pattern with onevertex may befolded flat if and only if the sum of every other angle between consecutive creases is 180º? - ... that, while the
criss-cross algorithm visits all eight corners of theKlee–Minty cube when started at a , it visits only three more corners*worst*corneron average when started at a ?*random*corner - ...that in
senary , all other than 2 and 3 end in 1 or a 5?**prime numbers** - ... if the integer
*n*isprime , then the*n*thPerrin number is divisible by*n*? - ...that it is impossible to
using only atrisect a general angle ruler and a compass ? - ...that in a group of 23 people, there is a more than 50% chance that two people
share a birthday ?

The ** Mathematics WikiProject** is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's

**Project pages**

**Essays**

**Subprojects**

**Related projects**

General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|

Algebra | Analysis | Geometry and topology | Applied mathematics |

ARTICLE INDEX: | |

MATHEMATICIANS: |

theory | science | mathematics |

Mathematics | theory |

Other Languages

አማርኛ: በር:ሒሳብ

العربية: بوابة:رياضيات

авар: Портал:Математика

تۆرکجه: پوْرتال:ریاضیات

বাংলা: প্রবেশদ্বার:গণিত

Bân-lâm-gú: Portal:Sò͘-ha̍k

беларуская (тарашкевіца): Партал:Матэматыка

български: Портал:Математика

català: Portal:Matemàtiques

Cebuano: Ganghaan:Matematika

čeština: Portál:Matematika

Deutsch: Portal:Mathematik

eesti: Portaal:Matemaatika

Ελληνικά: Πύλη:Μαθηματικά

español: Portal:Matemática

Esperanto: Portalo:Matematiko

فارسی: درگاه:ریاضیات

français: Portail:Mathématiques

Gĩkũyũ: Portal:Mathematics

한국어: 포털:수학

հայերեն: Պորտալ:Մաթեմատիկա

हिन्दी: प्रवेशद्वार:गणित

Bahasa Indonesia: Portal:Matematika

interlingua: Portal:Mathematica

íslenska: Gátt:Stærðfræði

italiano: Portale:Matematica

עברית: פורטל:מתמטיקה

ქართული: პორტალი:მათემატიკა

қазақша: Портал:Математика

Kiswahili: Lango:Hisabati

Kreyòl ayisyen: Pòtay:matematik

kurdî: Portal:Matematîk

Latina: Porta:Mathematica

lietuvių: Vikisritis:Matematika

lumbaart: Portal:Matemàtega

magyar: Portál:Matematika

македонски: Портал:Математика

Malti: Portal:Matematika

Bahasa Melayu: Portal:Matematik

မြန်မာဘာသာ: Portal:သင်္ချာ

Nederlands: Portaal:Wiskunde

日本語: Portal:数学

oʻzbekcha/ўзбекча: Portal:Matematika

ਪੰਜਾਬੀ: ਵਿਕੀਪੀਡੀਆ:ਫਾਟਕ:ਹਿਸਾਬ

پښتو: تانبه:شمېرپوهنه

polski: Portal:Matematyka

português: Portal:Matemática

română: Portal:Matematică

Runa Simi: Punku p'anqa: Yupay yachay

русский: Портал:Математика

shqip: Portal:Matematikë

සිංහල: ද්වාරය:ගණිතය

سنڌي: باب:رياضيات

slovenčina: Portál:Matematika

Soomaaliga: Portal:Xisaab

کوردی: دەروازە:ماتماتیک

српски / srpski: Портал:Математика

ၽႃႇသႃႇတႆး : ၵိူၼ်ႇတူ:Mathematics

suomi: Teemasivu:Matematiikka

svenska: Portal:Matematik

தமிழ்: வலைவாசல்:கணிதம்

Taqbaylit: Awwur:Tusnakt

татарча/tatarça: Портал:Математика

ไทย: สถานีย่อย:คณิตศาสตร์

тоҷикӣ: Портал:Математика

Türkçe: Portal:Matematik

українська: Портал:Математика

اردو: باب:ریاضیات

Tiếng Việt: Chủ đề:Toán học

文言: 門:數學

吴语: Portal:数学

ייִדיש: פארטאל:מאטעמאטיק

Yorùbá: Èbúté:Ìmọ̀ ìṣirò

粵語: Portal:數學

中文: Portal:数学