## Orders of magnitude (numbers) |

This article needs additional citations for . (July 2016) ( |

This list contains selected positive

- smaller than 10
^{−100}(one googolth) - 10
^{−100}to 10^{−30} - 10
^{−30} - 10
^{−27} - 10
^{−24} - 10
^{−21} - 10
^{−18} - 10
^{−15} - 10
^{−12} - 10
^{−9} - 10
^{−6} - 10
^{−3} - 10
^{−2} - 10
^{−1} - 10
^{0} - 10
^{1} - 10
^{2} - 10
^{3} - 10
^{4} - 10
^{5} - 10
^{6} - 10
^{7} - 10
^{8} - 10
^{9} - 10
^{10} - 10
^{11} - 10
^{12} - 10
^{15} - 10
^{18} - 10
^{21} - 10
^{24} - 10
^{27} - 10
^{30} - 10
^{33} - 10
^{36} - 10
^{39} - 10
^{42}to 10^{100} - 10
^{100}(one ) to 10googol ^{10100}(one )googolplex - larger than 10
^{10100} - see also
- references
- external links

*Mathematics – Numbers:*The numberzero is a natural, even number which quantifies a count or an amount of null size.^{[1]}*Mathematics – Writing:*Approximately 10^{−183,800}is a rough first estimate of the probability that amonkey ,placed in front of a typewriter , will perfectly type out William Shakespeare's playon its first try.Hamlet ^{[2]}However, takingpunctuation ,capitalization , and spacing into account, the actual probability is far lower: around 10^{−360,783}.^{[3]}*Computing:*The number 1×10^{−6176}is equal to thesmallest positive non-zero value that can be represented by aquadruple-precision IEEE decimal floating-point value.*Computing:*The number 6.5×10^{−4966}is approximately equal to the smallest positive non-zero value that can be represented by aquadruple-precision IEEE floating-point value.*Computing:*The number 3.6×10^{−4951}is approximately equal to the smallest positive non-zero value that can be represented by a80-bit x86 double-extended IEEE floating-point value.*Computing:*The number 1×10^{−398}is equal to the smallest positive non-zero value that can be represented by adouble-precision IEEE decimal floating-point value.*Computing:*The number 4.9×10^{−324}is approximately equal to the smallest positive non-zero value that can be represented by adouble-precision IEEE floating-point value.*Computing:*The number 1×10^{−101}is equal to the smallest positive non-zero value that can be represented by asingle-precision IEEE decimal floating-point value.

Other Languages

español: Orden de magnitud (números)

français: Ordres de grandeur de nombres

한국어: 크기 정도 (수)

italiano: Ordini di grandezza (numeri)

मराठी: खर्व

日本語: 数の比較

slovenščina: Red velikosti (števila)

Tiếng Việt: Bậc độ lớn (số)

中文: 数量级 (数)