Numeral system

Western Arabic, Eastern Arabic, Roman, Bengali–Assamese, Malayalam, Thai, and Chinese numerals

A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number three in the binary numeral system (used in computers) and the number eleven in the decimal numeral system (used in common life).

The number the numeral represents is called its value.

Ideally, a numeral system will:

  • Represent a useful set of numbers (e.g. all integers, or rational numbers)
  • Give every number represented a unique representation (or at least a standard representation)
  • Reflect the algebraic and arithmetic structure of the numbers.

For example, the usual decimal representation of whole numbers gives every nonzero whole number a unique representation as a finite sequence of digits, beginning with a non-zero digit. However, when decimal representation is used for the rational or real numbers, such numbers in general have an infinite number of representations, for example 2.31 can also be written as 2.310, 2.3100000, 2.309999999..., etc., all of which have the same meaning except for some scientific and other contexts where greater precision is implied by a larger number of figures shown.

Numeral systems are sometimes called number systems, but that name is ambiguous, as it could refer to different systems of numbers, such as the system of real numbers, the system of complex numbers, the system of p-adic numbers, etc. Such systems are, however, not the topic of this article.

Main numeral systems

The most commonly used system of numerals is the Hindu–Arabic numeral system.[1] Two Indian mathematicians are credited with developing it. Aryabhata of Kusumapura developed the place-value notation in the 5th century and a century later Brahmagupta introduced the symbol for zero. The numeral system and the zero concept, developed by the Hindus in India, slowly spread to other surrounding countries due to their commercial and military activities with India. The Arabs adopted and modified it. Even today, the Arabs call the numerals which they use "Rakam Al-Hind" or the Hindu numeral system. The Arabs translated Hindu texts on numerology and spread them to the western world due to their trade links with them. The Western world modified them and called them the Arabic numerals, as they learned them from the Arabs. Hence the current western numeral system is the modified version of the Hindu numeral system developed in India. It also exhibits a great similarity to the Sanskrit–Devanagari notation, which is still used in India and neighbouring Nepal.

The simplest numeral system is the unary numeral system, in which every natural number is represented by a corresponding number of symbols. If the symbol / is chosen, for example, then the number seven would be represented by ///////. Tally marks represent one such system still in common use. The unary system is only useful for small numbers, although it plays an important role in theoretical computer science. Elias gamma coding, which is commonly used in data compression, expresses arbitrary-sized numbers by using unary to indicate the length of a binary numeral.

The unary notation can be abbreviated by introducing different symbols for certain new values. Very commonly, these values are powers of 10; so for instance, if / stands for one, − for ten and + for 100, then the number 304 can be compactly represented as +++ //// and the number 123 as + − − /// without any need for zero. This is called sign-value notation. The ancient Egyptian numeral system was of this type, and the Roman numeral system was a modification of this idea.

More useful still are systems which employ special abbreviations for repetitions of symbols; for example, using the first nine letters of the alphabet for these abbreviations, with A standing for "one occurrence", B "two occurrences", and so on, one could then write C+ D/ for the number 304. This system is used when writing Chinese numerals and other East Asian numerals based on Chinese. The number system of the English language is of this type ("three hundred [and] four"), as are those of other spoken languages, regardless of what written systems they have adopted. However, many languages use mixtures of bases, and other features, for instance 79 in French is soixante dix-neuf (60 + 10 + 9) and in Welsh is pedwar ar bymtheg a thrigain (4 + (5 + 10) + (3 × 20)) or (somewhat archaic) pedwar ugain namyn un (4 × 20 − 1). In English, one could say "four score less one", as in the famous Gettysburg Address representing "87 years ago" as "four score and seven years ago".

More elegant is a positional system, also known as place-value notation. Again working in base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×102 + 0×101 + 4×100. Note that zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip" a power. The Hindu–Arabic numeral system, which originated in India and is now used throughout the world, is a positional base 10 system.

Arithmetic is much easier in positional systems than in the earlier additive ones; furthermore, additive systems need a large number of different symbols for the different powers of 10; a positional system needs only ten different symbols (assuming that it uses base 10).

The positional decimal system is presently universally used in human writing. The base 1000 is also used (albeit not universally), by grouping the digits and considering a sequence of three decimal digits as a single digit. This is the meaning of the common notation 1,000,234,567 used for very large numbers.

In computers, the main numeral systems are based on the positional system in base 2 (binary numeral system), with two binary digits, 0 and 1. Positional systems obtained by grouping binary digits by three (octal numeral system) or four (hexadecimal numeral system) are commonly used. For very large integers, bases 232 or 264 (grouping binary digits by 32 or 64, the length of the machine word) are used, as, for example, in GMP.

The numerals used when writing numbers with digits or symbols can be divided into two types that might be called the arithmetic numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and the geometric numerals (1, 10, 100, 1000, 10000 ...), respectively. The sign-value systems use only the geometric numerals and the positional systems use only the arithmetic numerals. A sign-value system does not need arithmetic numerals because they are made by repetition (except for the Ionic system), and a positional system does not need geometric numerals because they are made by position. However, the spoken language uses both arithmetic and geometric numerals.

In certain areas of computer science, a modified base k positional system is used, called bijective numeration, with digits 1, 2, ..., k (k ≥ 1), and zero being represented by an empty string. This establishes a bijection between the set of all such digit-strings and the set of non-negative integers, avoiding the non-uniqueness caused by leading zeros. Bijective base-k numeration is also called k-adic notation, not to be confused with p-adic numbers. Bijective base 1 is the same as unary.

Other Languages
Alemannisch: Zahlensystem
العربية: نظام عد
azərbaycanca: Say sistemləri
Bân-lâm-gú: Sò͘-jī
беларуская: Сістэма злічэння
беларуская (тарашкевіца)‎: Сыстэма зьлічэньня
български: Бройна система
bosanski: Brojevni sistem
Чӑвашла: Шутлав йĕрки
dansk: Talsystem
Deutsch: Zahlensystem
Esperanto: Nombrosistemo
한국어: 기수법
hrvatski: Brojevni sustav
Bahasa Indonesia: Sistem bilangan
íslenska: Talnakerfi
Basa Jawa: Sistem wilangan
қазақша: Санау жүйесі
Kreyòl ayisyen: Sistèm nimewotasyon
македонски: Броен систем
Bahasa Melayu: Sistem angka
Nederlands: Talstelsel
日本語: 命数法
norsk: Tallsystem
олык марий: Чотрадам системе
oʻzbekcha/ўзбекча: Sanoq tizimi
Sesotho sa Leboa: Lebadi
Simple English: Numeral system
slovenčina: Číselná sústava
slovenščina: Številski sistem
српски / srpski: Бројевни систем
srpskohrvatski / српскохрватски: Brojevni sistem
svenska: Talsystem
Tagalog: Numerasyon
తెలుగు: తెలుగు
Türkçe: Sayısal sistem
українська: Система числення
Tiếng Việt: Hệ đếm
文言: 表數法
粵語: 記數法
中文: 记数系统