Gold,  79Au
General properties
Pronunciation d/
Appearance metallic yellow
Standard atomic weight (Ar) 196.966569(5) [1] [2]
Gold in the periodic table
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (post-transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (post-transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (post-transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (post-transition metal)
Nihonium (unknown chemical properties)
Flerovium (unknown chemical properties)
Moscovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)


Atomic number (Z) 79
Group, period group 11, period 6
Block d-block
Element category   transition metal
Electron configuration [ Xe] 4f14 5d10 6s1
Electrons per shell
2, 8, 18, 32, 18, 1
Physical properties
Spectral lines
Color lines in a spectral range
Phase (at  STP) solid
Melting point 1337.33  K ​(1064.18 °C, ​1947.52 °F)
Boiling point 3243 K ​(2970 °C, ​5378 °F)
Density (near r.t.) 19.30 g/cm3
when liquid (at m.p.) 17.31 g/cm3
Heat of fusion 12.55  kJ/mol
Heat of vaporization 342 kJ/mol
Molar heat capacity 25.418 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1646 1814 2021 2281 2620 3078
Atomic properties
Oxidation states 5, 3, 2, 1, −1, −2, −3 ​(an amphoteric oxide)
Electronegativity Pauling scale: 2.54
Ionization energies
  • 1st: 890.1 kJ/mol
  • 2nd: 1980 kJ/mol
Atomic radius empirical: 144  pm
Covalent radius 136±6 pm
Van der Waals radius 166 pm
Crystal structure face-centered cubic (fcc)
Face centered cubic crystal structure for gold
Speed of sound thin rod 2030 m/s (at r.t.)
Thermal expansion 14.2 µm/(m·K) (at 25 °C)
Thermal conductivity 318 W/(m·K)
Electrical resistivity 22.14 nΩ·m (at 20 °C)
Magnetic ordering diamagnetic [3]
Magnetic susceptibility −28.0·10−6 cm3/mol (at 296 K) [4]
Tensile strength 120 MPa
Young's modulus 79 GPa
Shear modulus 27 GPa
Bulk modulus 180 GPa [5]
Poisson ratio 0.4
Mohs hardness 2.5
Vickers hardness 188–216 MPa
Brinell hardness 188–245 MPa
CAS Number 7440-57-5
Naming from Latin aurum, meaning gold
Discovery In the Middle East (before 6000 BCE)
Main isotopes of gold
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
195Au syn 186.10 d ε 195Pt
196Au syn 6.183 d ε 196Pt
β 196Hg
197Au 100% stable
198Au syn 2.69517 d β 198Hg
199Au syn 3.169 d β 199Hg
| references | in Wikidata

Gold is a chemical element with symbol Au (from Latin: aurum) and atomic number 79. In its purest form, it is a bright, slightly reddish yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal and a group 11 element. It is one of the least reactive chemical elements and is solid under standard conditions. Gold often occurs in free elemental (native) form, as nuggets or grains, in rocks, in veins, and in alluvial deposits. It occurs in a solid solution series with the native element silver (as electrum) and also naturally alloyed with copper and palladium. Less commonly, it occurs in minerals as gold compounds, often with tellurium ( gold tellurides).

Gold is thought to have been produced in supernova nucleosynthesis, from the collision of neutron stars, [6] and to have been present in the dust from which the Solar System formed. Because the Earth was molten when it was formed, almost all of the gold present in the early Earth probably sank into the planetary core. Therefore, most of the gold that is in the Earth's crust and mantle is thought to have been delivered to Earth later, by asteroid impacts during the Late Heavy Bombardment, about 4 billion years ago. [7] [8]

Gold is resistant to most acids, though it does dissolve in aqua regia, a mixture of nitric acid and hydrochloric acid, which forms a soluble tetrachloroaurate anion. Gold is insoluble in nitric acid, which dissolves silver and base metals, a property that has long been used to refine gold and to confirm the presence of gold in metallic objects, giving rise to the term acid test. Gold also dissolves in alkaline solutions of cyanide, which are used in mining and electroplating. Gold dissolves in mercury, forming amalgam alloys, but this is not a chemical reaction.

Historically, the value of gold was rooted in its relative rarity, [9] easy handling and minting, easy smelting and fabrication, resistance to corrosion and other chemical reactions ( nobility) and its distinctive color. [10] As a precious metal, gold has been used for coinage, jewelry, and other arts throughout recorded history. In the past, a gold standard was often implemented as a monetary policy, but gold coins ceased to be minted as a circulating currency in the 1930s, and the world gold standard was abandoned for a fiat currency system after 1976.

A total of 186,700 tonnes of gold exists above ground, as of 2015. [11] The world consumption of new gold produced is about 50% in jewelry, 40% in investments, and 10% in industry. [12] Gold's high malleability, ductility, resistance to corrosion and most other chemical reactions, and conductivity of electricity have led to its continued use in corrosion resistant electrical connectors in all types of computerized devices (its chief industrial use). Gold is also used in infrared shielding, colored-glass production, gold leafing, and tooth restoration. Certain gold salts are still used as anti-inflammatories in medicine. As of 2014, the world's largest gold producer by far was China with 450 tonnes. [13]


A gold nugget of 5 millimetres (0.20 in) in diameter (bottom) can be expanded through hammering into a gold foil of about 0.5 square metres (5.4 sq ft). Toi museum, Japan.

Gold is the most malleable of all metals; a single gram can be beaten into a sheet of 1 square meter, and an avoirdupois ounce into 300 square feet. Gold leaf can be beaten thin enough to become semi-transparent. The transmitted light appears greenish blue, because gold strongly reflects yellow and red. [14] Such semi-transparent sheets also strongly reflect infrared light, making them useful as infrared (radiant heat) shields in visors of heat-resistant suits, and in sun-visors for spacesuits. [15] Gold is a good conductor of heat and electricity.

Gold has a density of 19.3 g/cm3, almost identical to that of tungsten at 19.25 g/cm3; as such, tungsten has been used in counterfeiting of gold bars, such as by plating a tungsten bar with gold, [16] [17] [18] [19] or taking an existing gold bar, drilling holes, and replacing the removed gold with tungsten rods. [20] By comparison, the density of lead is 11.34 g/cm3, and that of the densest element, osmium, is 22.588 ± 0.015 g/cm3. [21]


Different colors of Ag–Au– Cu alloys

Whereas most metals are gray or silvery white, gold is slightly reddish-yellow. [22] This color is determined by the frequency of plasma oscillations among the metal's valence electrons, in the ultraviolet range for most metals but in the visible range for gold due to relativistic effects affecting the orbitals around gold atoms. [23] [24] Similar effects impart a golden hue to metallic caesium.

Common colored gold alloys include the distinctive eighteen-karat rose gold created by the addition of copper. Alloys containing palladium or nickel are also important in commercial jewelry as these produce white gold alloys. Fourteen-karat gold-copper alloy is nearly identical in color to certain bronze alloys, and both may be used to produce police and other badges. White gold alloys can be made with palladium or nickel. Fourteen- and eighteen-karat gold alloys with silver alone appear greenish-yellow and are referred to as green gold. Blue gold can be made by alloying with iron, and purple gold can be made by alloying with aluminium. Less commonly, addition of manganese, aluminium, indium and other elements can produce more unusual colors of gold for various applications. [25]

Colloidal gold, used by electron-microscopists, is red if the particles are small; larger particles of colloidal gold are blue. [26]


Gold has only one stable isotope, 197
, which is also its only naturally occurring isotope, so gold is both a mononuclidic and monoisotopic element. Thirty-six radioisotopes have been synthesized ranging in atomic mass from 169 to 205. The most stable of these is 195
with a half-life of 186.1 days. The least stable is 171
, which decays by proton emission with a half-life of 30 µs. Most of gold's radioisotopes with atomic masses below 197 decay by some combination of proton emission, α decay, and β+ decay. The exceptions are 195
, which decays by electron capture, and 196
, which decays most often by electron capture (93%) with a minor β decay path (7%). [27] All of gold's radioisotopes with atomic masses above 197 decay by β decay. [28]

At least 32 nuclear isomers have also been characterized, ranging in atomic mass from 170 to 200. Within that range, only 178
, 180
, 181
, 182
, and 188
do not have isomers. Gold's most stable isomer is 198m2
with a half-life of 2.27 days. Gold's least stable isomer is 177m2
with a half-life of only 7 ns. 184m1
has three decay paths: β+ decay, isomeric transition, and alpha decay. No other isomer or isotope of gold has three decay paths. [28]


The production of gold from a more common element, such as lead, has long been a subject of human inquiry, and the ancient and medieval discipline of alchemy often focused on it; however, the transmutation of the chemical elements did not become possible until the understanding of nuclear physics in the 20th century. The first synthesis of gold was conducted by Japanese physicist Hantaro Nagaoka, who synthesized gold from mercury in 1924 by neutron bombardment. [29] An American team, working without knowledge of Nagaoka's prior study, conducted the same experiment in 1941, achieving the same result and showing that the isotopes of gold produced by it were all radioactive. [30]

Gold can currently be manufactured in a nuclear reactor by irradiation either of platinum or mercury.

Only the mercury isotope 196Hg, which occurs with a frequency of 0.15% in natural mercury, can be converted to gold by neutron capture, and following electron capture-decay into 197Au with slow neutrons. Other mercury isotopes are converted when irradiated with slow neutrons into one another, or formed mercury isotopes which beta decay into thallium.

Using fast neutrons, the mercury isotope 198Hg, which composes 9.97% of natural mercury, can be converted by splitting off a neutron and becoming 197Hg, which then disintegrates to stable gold. This reaction, however, possesses a smaller activation cross-section and is feasible only with un-moderated reactors.

It is also possible to eject several neutrons with very high energy into the other mercury isotopes in order to form 197Hg. However such high-energy neutrons can be produced only by particle accelerators.[ clarification needed]

Other Languages
Acèh: Meuih
Afrikaans: Goud
Alemannisch: Gold
አማርኛ: ወርቅ
Ænglisc: Gold
العربية: ذهب
aragonés: Oro
ܐܪܡܝܐ: ܕܗܒܐ
armãneashti: Malamâ
অসমীয়া: সোণ
asturianu: Oru
Avañe'ẽ: Kuarepotiju
Aymar aru: Quri
azərbaycanca: Qızıl
تۆرکجه: قیزیل
বাংলা: সোনা
Bahasa Banjar: Amas
Bân-lâm-gú: Kim
башҡортса: Алтын
беларуская: Золата
беларуская (тарашкевіца)‎: Золата
भोजपुरी: सोना
Bikol Central: Bulawan
български: Злато
Boarisch: Goid
བོད་ཡིག: གསེར།
bosanski: Zlato
brezhoneg: Aour
буряад: Алтан
català: Or
Чӑвашла: Ылтăн
Cebuano: Bulawan
čeština: Zlato
corsu: Oru
Cymraeg: Aur
dansk: Guld
Deutsch: Gold
Diné bizaad: Óola
eesti: Kuld
Ελληνικά: Χρυσός
emiliàn e rumagnòl: Ôr
эрзянь: Сырне
español: Oro
Esperanto: Oro
estremeñu: Oru
euskara: Urre
فارسی: طلا
Fiji Hindi: Sona
føroyskt: Gull
français: Or
Frysk: Goud
furlan: Aur
Gaeilge: Ór
Gaelg: Airh
Gàidhlig: Òr
galego: Ouro
Gĩkũyũ: Gold
ગુજરાતી: સોનું
客家語/Hak-kâ-ngî: Kîm
хальмг: Алтын
Հայերեն: Ոսկի
हिन्दी: सोना
hornjoserbsce: Złoto
hrvatski: Zlato
Ido: Oro
Ilokano: Balitok
Bahasa Indonesia: Emas
interlingua: Auro
Iñupiak: Manik kaviqsuaq
isiXhosa: Igolide
isiZulu: Igolide
íslenska: Gull
italiano: Oro
עברית: זהב
Basa Jawa: Emas
kalaallisut: Kuulti
ಕನ್ನಡ: ಚಿನ್ನ
Kapampangan: Gintu
ქართული: ოქრო
कॉशुर / کٲشُر: سۄن
kaszëbsczi: Złoto
қазақша: Алтын
Kiswahili: Dhahabu
коми: Зарни
Kongo: Wolo
Kreyòl ayisyen:
Kurdî: Zêr
Кыргызча: Алтын
кырык мары: Шӧртньӹ
лакку: Муси
лезги: Къизил
Latina: Aurum
latviešu: Zelts
Lëtzebuergesch: Gold
lietuvių: Auksas
Ligure: Öo
Limburgs: Goud
lingála: Wólo
Livvinkarjala: Kuldu
la .lojban.: solji
magyar: Arany
मैथिली: सोना
македонски: Злато
Malagasy: Volamena
മലയാളം: സ്വർണം
मराठी: सोने
مصرى: دهب
Bahasa Melayu: Emas
Mìng-dĕ̤ng-ngṳ̄: Gĭng
Mirandés: Ouro
мокшень: Зирня
монгол: Алт
မြန်မာဘာသာ: ရွှေ
Nederlands: Goud
नेपाली: सुन
नेपाल भाषा: लुं
Nordfriisk: Gul
norsk: Gull
norsk nynorsk: Gull
Nouormand: Or
Novial: Ore
occitan: Aur
олык марий: Шӧртньӧ
ଓଡ଼ିଆ: ସୁନା
oʻzbekcha/ўзбекча: Oltin
ਪੰਜਾਬੀ: ਸੋਨਾ
पालि: औरियम
پنجابی: سونا
Papiamentu: Oro
پښتو: سور زر
Patois: Guol
Перем Коми: Зарни
Piemontèis: Òr (element)
Plattdüütsch: Gold
polski: Złoto
português: Ouro
Ripoarisch: Jold
română: Aur
rumantsch: Aur
Runa Simi: Quri
русиньскый: Золото
русский: Золото
саха тыла: Көмүс
sámegiella: Golli
संस्कृतम्: सुवर्णम्
Scots: Gowd
Seeltersk: Gould
shqip: Ari
sicilianu: Oru
Simple English: Gold
slovenčina: Zlato
slovenščina: Zlato
словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ: Ꙁлато
Soomaaliga: Dahab
کوردی: زێڕ
Sranantongo: Gowtu
српски / srpski: Злато
srpskohrvatski / српскохрватски: Zlato
suomi: Kulta
svenska: Guld
Tagalog: Ginto
தமிழ்: தங்கம்
татарча/tatarça: Алтын
తెలుగు: బంగారం
ไทย: ทองคำ
тоҷикӣ: Тилло
Tsetsêhestâhese: Véhone-ma'kaata
ತುಳು: ಬಂಗಾರ್
Türkçe: Altın
українська: Золото
اردو: سونا
ئۇيغۇرچە / Uyghurche: ئالتۇن
Vahcuengh: Gim
vèneto: Oro
vepsän kel’: Kuld
Tiếng Việt: Vàng
Võro: Kuld
walon: Ôr
Winaray: Bulawan
ייִדיש: גאלד
Yorùbá: Wúrà
Zazaki: Zern
žemaitėška: Auksos