Coccolithophore

Coccolithophore
Temporal range: Late Triassic - present[1]
Gephyrocapsa oceanica color.jpg
The coccolithophore Gephyrocapsa oceanica
Scientific classification
Domain:
(unranked):
(unranked):
(unranked):
Class:
Order:

A coccolithophore (or coccolithophorid, from the adjective[2]) is a unicellular, eukaryotic phytoplankton (alga). They belong either to the kingdom Protista, according to Robert Whittaker's Five kingdom classification, or clade Hacrobia, according to the newer biological classification system. Within the Hacrobia, the coccolithophorids are in the phylum or division Haptophyta, class Prymnesiophyceae (or Coccolithophyceae).[3] Coccolithophorids are distinguished by special calcium carbonate plates (or scales) of uncertain function called coccoliths, which are also important microfossils. However, there are Prymnesiophyceae species lacking coccoliths (e.g. in genus Prymnesium), so not every member of Prymnesiophyceae is coccolithophorid.[4] Coccolithophores are almost exclusively marine and are found in large numbers throughout the sunlight zone of the ocean.

The most abundant species of coccolithophore, Emiliania huxleyi, belongs to the order Isochrysidales and family Noëlaerhabdaceae.[3] It is found in temperate, subtropical, and tropical oceans.[5] This makes E. huxleyi an important part of the planktonic base of a large proportion of marine food webs. It is also the fastest growing coccolithophore in laboratory cultures.[6] It is studied for the extensive blooms it forms in nutrient depleted waters after the reformation of the summer thermocline.[7][8] and for its production of molecules known as alkenones that are commonly used by earth scientists as a means to estimate past sea surface temperatures.[9] Coccolithophores are of particular interest to those studying global climate change because as ocean acidity increases, their coccoliths may become even more important as a carbon sink.[10] Furthermore, management strategies are being employed to prevent eutrophication-related coccolithophore blooms, as these blooms lead to a decrease in nutrient flow to lower levels of the ocean.[11]

Structure

Coccolithus pelagicus.

Coccolithophores are spherical cells about 5–100 micrometres across, enclosed by calcareous plates called coccoliths, which are about 2–25 micrometres across. Each cell contains two brown chloroplasts which surround the nucleus.[12]

Exoskeleton (coccosphere)

Each unicellular plankton is enclosed in its own collection of coccoliths, the calcified scales, which make up its exoskeleton or coccosphere.[13] The coccoliths are created inside the cell and while some species maintain a single layer throughout life only producing new coccoliths as the cell grows, others continually produce and shed coccoliths.

Composition

The primary constituent of coccoliths is calcium carbonate, or chalk. Calcium carbonate is transparent, so the organisms’ photosynthetic activity is not compromised by encapsulation in a coccosphere.[14]

Formation

Coccoliths are produced by a biomineralization process known as coccolithogenesis.[12] Generally, calcification of coccoliths occurs in the presence of light, and these scales are produced much more during the exponential phase of growth than the stationary phase.[15] Although not yet entirely understood, the biomineralization process is tightly regulated by calcium signaling. Calcite formation begins in the golgi complex where protein templates nucleate the formation of CaCO3 crystals and complex acidic polysaccharides control the shape and growth of these crystals.[16] As each scale is produced, it is exported in a Golgi-derived vesicle and added to the inner surface of the coccosphere. This means that the most recently produced coccoliths may lie beneath older coccoliths.[17] Depending upon the phytoplankton's stage in the life cycle, two different types of coccoliths may be formed. Holococcoliths are produced only in the haploid phase, lack radial symmetry, and are composed of anywhere from hundreds to thousands of similar minute (ca 0.1 µm) rhombic calcite crystals. These crystals are thought to form at least partially outside the cell. Heterococcoliths occur only in the diploid phase, have radial symmetry, and are composed of relatively few complex crystal units (less than 100). Although they are rare, combination coccospheres, which contain both holococcoliths and heterococcoliths, have been observed in the plankton recording coccolithophore life cycle transitions. Finally, the coccospheres of some species are highly modified with various appendages made of specialized coccoliths.[18]

Function

While the exact function of the coccosphere is unclear, many potential functions have been proposed. Most obviously coccoliths may protect the phytoplankton from predators. It also appears that it helps them to create more a stable pH. During photosynthesis carbon dioxide is removed from the water, making it more basic. Also calcification removes carbon dioxide, but chemistry behind it leads to the opposite pH reaction; it makes the water more acidic. The combination of photosynthesis and calcification therefore even out each other regarding pH changes.[19] In addition, these exoskeletons may confer an advantage in energy production, as coccolithogenesis seems highly coupled with photosynthesis. Organic precipitation of calcium carbonate from bicarbonate solution produces free carbon dioxide directly within the cellular body of the alga, this additional source of gas is then available to the Coccolithophore for photosynthesis. It has been suggested that they may provide a cell-wall like barrier to isolate intracellular chemistry from the marine environment.[20] More specific, defensive properties of coccoliths may include protection from osmotic changes, chemical or mechanical shock, and short-wavelength light.[21] It has also been proposed that the added weight of multiple layers of coccoliths allows the organism to sink to lower, more nutrient rich layers of the water and conversely, that coccoliths add buoyancy, stopping the cell from sinking to dangerous depths.[22] Coccolith appendages have also been proposed to serve several functions, such as inhibiting grazing by zooplankton.[18]

Uses

Coccoliths are the main component of the Chalk, a Late Cretaceous rock formation which outcrops widely in southern England and forms the White Cliffs of Dover, and of other similar rocks in many other parts of the world.[8] At the present day sedimented coccoliths are a major component of the calcareous oozes that cover up to 35% of the ocean floor and is kilometres thick in places.[16] Because of their abundance and wide geographic ranges, the coccoliths which make up the layers of this ooze and the chalky sediment formed as it is compacted serve as valuable microfossils.

Cellular anatomy

Enclosed in each coccosphere is a single cell with membrane bound organelles. Two large chloroplasts with brown pigment are located on either side of the cell and surround the nucleus, mitochondria, golgi apparatus, endoplasmic reticulum, and other organelles. Each cell also has two flagellar structures, which are involved not only in motility, but also in mitosis and formation of the cytoskeleton.[23] In some species, a functional or vestigial haptonema is also present.[21] This structure, which is unique to haptophytes, coils and uncoils in response to environmental stimuli. Although poorly understood, it has been proposed to be involved in prey capture.[23]

Other Languages
العربية: بذيرات جيرية
azərbaycanca: Kokkolitoforidlər
català: Cocolitòfor
čeština: Kokolitky
Deutsch: Haptophyta
Esperanto: Kokolito
français: Coccosphaerales
Bahasa Indonesia: Kokolitofor
italiano: Coccolitoforo
Bahasa Melayu: Kokolitofor
Nederlands: Coccolithoforen
日本語: 円石藻
português: Cocolitóforo
українська: Кокколітофориди
中文: 鈣板金藻