Θεωρία γράφων

Θεωρία γράφων
Ταξινόμηση
Dewey 512
MSC2010 05Cxx
Γράφημα (σχέδιο) γράφου

Η θεωρία γράφων είναι ένα γνωστικό πεδίο των διακριτών μαθηματικών, με εφαρμογές στην πληροφορική, στις επιστήμες μηχανικών, στη χημεία, στην κοινωνιολογία κ.α. Αν και οι απαρχές της θεωρίας θεμελιώθηκαν κατά τον 18ο αιώνα, αναπτύχθηκε μεταπολεμικά ως ξεχωριστό πεδίο των εφαρμοσμένων μαθηματικών [1].

Στην ελληνική ορολογία οι όροι θεωρία γραφημάτων και θεωρία γράφων χρησιμοποιούνται ως ισοδύναμοι. Προτιμάται ο όρος γράφος, για να διακρίνεται από το γράφημα συνάρτησης. Ανάμεσα στους ποικίλους ορισμούς που απαντώνται, ένας σχετικά πλήρης ορίζει πως η θεωρία γράφων είναι η μελέτη των γράφων (γραφημάτων) και των σχέσεών τους. Οι μαθηματικοί υπολογισμοί επί των γράφων υλοποιούνται με συγκεκριμένους αλγόριθμους. Με γράφους μπορούν να μοντελοποιηθούν πολλές διαφορετικές φυσικές ή τεχνολογικές δομές, όπως π.χ. τα δίκτυα υπολογιστών, όπου το διάγραμμα ενός δικτύου μοντελοποιείται ως ένας απλός κατευθυνόμενος γράφος [2].

Γράφος

Κύριο λήμμα: Γράφος

Ο γράφος στον απλούστερο ορισμό του είναι η οπτική αναπαράσταση των σχέσεων που αναπτύσσουν ορισμένες ποσότητες, σχεδιασμένες σε σχέση με ένα σύνολο αξόνων. [3] Ένας άλλος ορισμός που κινείται στο ίδιο εννοιολογικό πλαίσιο της οπτικής αναπαράστασης αναγνωρίζει τον γράφο ως απεικόνιση αποτελούμενη από ένα σύνολο σημείων (κορυφών ή κόμβων) που συνδέονται με γραμμές (ακμές). Στους κατευθυνόμενους ή προσανατολισμένους γράφους οι ακμές απεικονίζονται διανυσματικά. [4]

Σε μία άλλη εκδοχή είναι ένα σύνολο από κόμβους (κορυφές) που ενώνονται μεταξύ τους με ακμές και ορίζεται από τον τρόπο με τον οποίο συνδέονται οι κορυφές (κόμβοι). Αν οι ακμές προσανατολίζονται οριζόμενες από διατεταγμένα ζεύγη κόμβων, τότε ο γράφος αποκαλείται κατευθυνόμενος. Αν οι ακμές δεν προσανατολίζονται, οριζόμενες απλώς από διμελή σύνολα και όχι διατεταγμένα ζεύγη, τότε αποκαλείται μη κατευθυνόμενος. Επιπλέον στοιχεία για τον ορισμό ενός γράφου είναι η σύνδεση των ακμών του με κάποια αξία, οπότε αποκαλείται σταθμισμένος.

Με τη σειρά του πλήρης αποκαλείται ο γράφος που περιέχει ακμές για κάθε ζεύγος κόμβων, αραιός εκείνος που περιέχει λίγες ακμές ή αντίστροφα πυκνός. [5]

Πλήρης γράφος με 5 κόμβους. Κάθε κόμβος συνδέεται με ακμή με κάθε άλλο κόμβο
Άκυκλος γράφος ( δέντρο) έξι κόμβων
Κυκλικός γράφος (δακτύλιος) έξι κόμβων
άλλες γλώσσες
አማርኛ: ሥነ ግራፍ
беларуская: Тэорыя графаў
čeština: Teorie grafů
dansk: Grafteori
English: Graph theory
Esperanto: Grafeteorio
euskara: Grafo teoria
Bahasa Indonesia: Teori graf
íslenska: Netafræði
日本語: グラフ理論
한국어: 그래프 이론
lietuvių: Grafų teorija
latviešu: Grafu teorija
монгол: Графын онол
Bahasa Melayu: Teori graf
Nederlands: Grafentheorie
norsk nynorsk: Grafteori
norsk: Grafteori
português: Teoria dos grafos
sicilianu: Tiuria dî grafi
srpskohrvatski / српскохрватски: Teorija grafova
Simple English: Graph theory
slovenčina: Teória grafov
slovenščina: Teorija grafov
српски / srpski: Теорија графова
svenska: Grafteori
Türkçe: Çizge teorisi
українська: Теорія графів
Tiếng Việt: Lý thuyết đồ thị
中文: 图论
粵語: 圖論