Willebrord Snell

Page d'aide sur l'homonymie Pour les articles homonymes, voir Snell et Snellius.
Willebrord Snell
Description de l'image Willebrord Snell, portrait.png.
Naissance
Leyde (Pays-Bas)
Décès (à 46 ans)
Leyde (Pays-Bas)
NationalitéDrapeau des Pays-Bas Néerlandais
DomainesPhysique, mathématiques
InstitutionsUniversité de Leyde
DiplômeUniversité de Leyde
Renommé pourLois de Snell-Descartes

Willebrord Snell van Royen ou Snellius (1580-1626) est un humaniste, mathématicien et physicien néerlandais, élève de Ludolph van Ceulen et de Joseph Juste Scaliger.

Biographie

La formation d'un intellectuel

Le père de Willebrord Snell, Rudolph Snellius (en), né en 1546 à Oudewater près de Gouda, est professeur de mathématiques à l'université de Leyde. Sa mère se prénomme Machtelt Cornelisdochter. Ils vivent (avec 22 de ses étudiants) à Pieterskerkhof. Willebrord est un enfant précoce ; ses deux autres frères sont morts jeunes, et son père lui enseigne lui-même les langues anciennes, y compris l'hébreu. Tous ses livres d'enfance sont en latin (excepté un Ramus) ou en grec. Disciple du philosophe Pierre de La Ramée, collègue du puissant et vaniteux philologue Joseph Juste Scaliger, recteur de l'université, son père pousse naturellement Willebrord vers des études de droit. Mais la passion conduit l'enfant vers les mathématiques. En 1597, le jeune Snell est pressenti pour se former auprès de Tycho Brahe. En 1599 il reçoit pour maître le mathématicien-épéiste van Ceulen[1].

Pérégrinations européennes

En 1600, se sentant à l'étroit en Zélande, Snell abandonne les Pays-Bas et part pour l'Allemagne. Il rencontre Adrien Romain à l'université de Wurtzbourg, puis il va à Prague, et rencontre Tycho Brahe, Kepler et Otho Valentinus. À la mort de Brahe, il part pour Altdorf et rencontre l'astronome Michael Maestlin[2]. Il revient en 1602, rappelé par son père, qui vient d'acheter une nouvelle maison, mais est toujours en procès avec l'un de leurs voisins. Snell prépare alors deux traductions en latin. Celle du livre XXVII de la géométrie de Ramus (publié en 1604 et 1612) et celle du livre de Simon Stevin : pensées mathématiques ou Wisconstighe gedachtenissen, publié en 1608 sous le titre Hypomnemata mathematica.[3]. En 1603, il repart pour Paris. Mais arrive trop tard pour rencontrer Viète, mort en février. Il rencontre néanmoins son élève, Jacques Aleaume, devenu ingénieur militaire du roi Henri IV. L'année suivante, on retrouve Willebrord à Cassel, à la cour du landgrave Maurice. Il entre en correspondance avec le pasteur et mathématicien Lansberge de Meulebeke. À Leyde, il reçoit la visite d'Alexander Anderson (alors ami de Jacques Aleaume)[1].

Premiers travaux

Le , Willebrord présente devant l'université de Leyde une thèse philosophique dont l'érudition éblouit et qui résonne comme un hommage à la science de son père[4]. Il est nommé magister artium. Passé cet exploit, Willebrord Snell se consacre à l'enseignement, auquel l'autorise peu à peu la ville de Leyde. À l'occasion de ces cours, il se montre opposé aux travaux de Copernic. Il se marie (sa femme s'appelle Maria de Langhe) le 1er août 1608. Il naîtra de ce mariage Jacob en 1609, une fille tôt disparue (1610-1614), Rudolph en 1614, Jannetgen en 1622 et Laurens en 1623… (18 enfants au total, dont de nombreux mort-nés)[1].

Vers 1608, Snell commence la recomposition d'un traité perdu de Pappus. La France a son Apollonius gaulois, la Belgique le sien en la personne d'Adrien Romain ; comme ses prédécesseurs, et à la suite de l'Apollonius Gallus de Viète, il écrit un Apollonius Batavius, dont la force consiste à décrire les opérations d'Apollonius en sections de rapport ou d'aire. Dédicacé à Maurice de Nassau, le livre a exigé de Snell de grands efforts et de la méthode, ce qu'il confesse avoir puisé dans Pierre de la Ramée.

En 1610, il se munit d'un des premiers télescopes. Les détails de sa vie apparaissent dans les échanges qu'il mène avec son oncle par alliance, Amelis Van Rosendael (1557-1620).

En 1612, Snell rédige sa première œuvre en astronomie, où il décrit sa vision, au télescope, des taches solaires. L'année suivante, il succède à son père à la mort de ce dernier (en mars), en tant que professeur de mathématiques à l'université de Leyde pour un salaire avoisinant les 800 gulden[1]. Cette année-là, il publie l'Arithmétique de Ramus et un traité sur les monnaies. En 1615 Il travaille avec les barons autrichiens Erasmus and Caspar Sterrenberg Sterrenberg, ses élèves. Il arpente la Terre selon des méthodes de triangulation issues de Gemma Frisius ou de Tycho Brahe[3]

Quadratures et triangulations

Plaque commémorative à l'emplacement de la maison de Snell, rappelant le problème de Snell (en).

Admirateur du travail de Ludolph van Ceulen, dont il publie en 1615 (pour le compte de sa veuve Adriana Simons) le livre posthume des Fondementa, en correspondance avec leur ami commun Adrien Romain, Snell reprend alors le flambeau allumé par Viète à la recherche d'une π. En 1621, son approximation du « nombre de Ludolph » est :

.

Cet encadrement, donnant 35 décimales exactes, est un record comparable à celui de Ludolph van Ceulen, en 1610. Pour cela, van Ceulen avait calculé le périmètre d'un polygone régulier de 262 côtés alors que Snell n'a besoin pour l'égaler que d'un polygone à 230 côtés[5]. Ils dépassent ainsi, et de loin, l'approximation de Metius de . La méthode de Snell fut reprise après lui, notamment par Christopher Grienberger pour obtenir 39 décimales[6] et par Christian Huygens dans son De Circuli Magnitudine Inventa. Snell découvre, aux environs de cette année-là, la loi de la réfraction qui porte son nom (voir infra).

Parallèlement, il se veut en 1617 le nouvel Ératosthène batave. Il applique sa connaissance des triangles à la mesure du rayon terrestre et parvient à un résultat excellent[Information douteuse] [?] sur la distance séparant les deux villes d'Alkmaar et de Berg-op-Zoom, deux cités séparées par un degré. Il s'agit de la première mesure opérée par triangulation[3].

Entre 1617 et 1619, il fait partie du comité, rémunéré par les États de Hollande pour étudier la méthode de navigation de Jan Hendricx Jarichs van der Ley[7]. Le comité, où l'on retrouve Simon Stevin, Jan Pietersz Dou (1573-1635) et Melchior van den Kerckhove (nl)[8], expérimente cette méthode en mer[9], et rend un avis négatif le mais l'année suivante, Snell juge plus favorablement du livre que Jarichs fait imprimer afin de défendre sa méthode[10]. En 1621, il doit à nouveau se prononcer sur la méthode du navigateur Jacobsz Claes, pour lequel il se montre indulgent.

Navigations et brève reconnaissance

Parallèlement à cette carrière mathématique, Snell continue ses ouvrages philosophiques en rendant hommage à Ramus au travers de deux ouvrages, parus en 1622 et 1626 en publiant ses traductions en hollandais de l'arithmétique et du livre XXVII de sa géométrie Meetkonst (1622)[4]. Les notations de Snell en restent cependant à l'algèbre numérique et bien qu'il rende souvent hommage à Viète, il semble que Snell, contrairement à Adrien Romain n'ait pas compris toute la puissance qu'il pouvait tirer de l'algèbre nouvelle[11].

En 1624, Snell fait éditer son propre livre de navigation, il s'intitule le Tiphys Batave du nom du pilote des Argonautes. Il le dédicace aux états, et en reçoit 300 guldens. C'est dans cet ouvrage qu'il introduit les courbes loxodromiques coupant les méridiens selon un angle constant[10].

En 1625, il noue connaissance avec Pierre Gassendi, avec lequel il entre en correspondance (probablement à propos d'un envoi des Exercitationes Paradoxicae). Snell partage avec Gassendi le même anti-aristotélicisme, le même goût pour la recherche astronomique, que ce soit pour mesurer la Terre ou observer des comètes. Snell est également en contact avec Ismaël Boulliau et devient l'ami de quelques-uns de ses collègues de Leyde, dont Gérard Vossius et André Rivet, L'année suivante, alors que l'université s'apprête enfin à faire de lui un recteur, il meurt à l'âge de 46 ans.

Sur sa tombe, dans l'église Saint-Pierre de Leyde, est marqué :

« Hier leggen begraven Mr. Willebrordus Snellius, in sijn leven professor matheseos, sterf op den 30 Octobris 1626 ende Maria de Lange, sijn huisvrouwe, sterf op den 11 Novembris 1627[3],[12]. »

Un inventaire précis de sa bibliothèque permet de bien connaître ses lectures et leurs influences sur Snell. Elle fut néanmoins dispersée, ainsi que les quadrants de sa collection d'instruments astronomiques et optiques.

Other Languages
Esperanto: Willebrord Snell
Kreyòl ayisyen: Willebrord Snel van Royen
Bahasa Indonesia: Willebrord Snellius
italiano: Willebrord Snel
македонски: Вилеброрд Снел
srpskohrvatski / српскохрватски: Willebrord Snellius
slovenčina: Willebrord Snellius
українська: Вілеброрд Снеліус
Tiếng Việt: Willebrord Snellius