Série de Dirichlet

Johann Peter Gustav Lejeune Dirichlet analyse les séries qui portent son nom en 1837 pour démontrer le théorème de la progression arithmétique.

En mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble ℂ des nombres complexes, et associée à une suite (an) de nombres complexes de l'une des deux façons suivantes :

Ici, la suite (λn) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est un demi-plan ouvert de ℂ, limité par une droite dont tous les points ont même abscisse. Ce domaine peut-être vide ou égal à ℂ tout entier. Le domaine de convergence simple est de même nature. Sur le domaine de convergence simple, la fonction définie par la série est holomorphe. Si la partie réelle de s tend vers plus l'infini, la fonction somme, si elle existe, tend vers 0.

Les séries de Dirichlet interviennent en théorie analytique des nombres. Dirichlet en analyse certaines, les séries L de Dirichlet, pour démontrer en 1837 le théorème de la progression arithmétique. L'hypothèse de Riemann s'exprime en termes de zéros du prolongement analytique d'une fonction somme d'une série de Dirichlet.

Other Languages