Propulsion spatiale

La propulsion spatiale est un champ continuel, des tests de fonctionnement des moteurs, comme ici celui du moteur principal de la navette spatiale, sont nécessaire avant chaque lancement.
Prise de vue en détail du Space Shuttle Main Engine durant un test au banc au John C. Stennis Space Center dans le comté de Hancock (Mississippi)

La propulsion spatiale désigne tout système permettant d’accélérer un objet dans l'espace. Cela inclut les moyens de propulsion des véhicules spatiaux ( fusées, satellites, sondes) ou les systèmes de commande d'attitude et d'orbite.

Différentes méthodes de propulsion spatiale existent, chacune ayant ses défauts et ses avantages. La propulsion spatiale est un domaine de recherche actif, pourtant la plupart des véhicules spatiaux utilisent actuellement le même type de propulsion s'appuyant sur l'éjection de gaz à grande vitesse en arrière du véhicule au travers d'une tuyère. Ce genre particulier de propulsion est appelé moteur-fusée.

La plupart des vaisseaux spatiaux actuels utilisent des moteurs-fusées chimiques (à propergol solide ou à ergols liquides) pour le lancement même si certains systèmes (comme le lanceur Pegasus ou le vaisseau SpaceShipOne) ont recours partiellement à un lancement aéroporté. La plupart des vaisseaux spatiaux utilisent un système de propulsion chimique simple mais fiable mono-ergol ou un système de propulsion électrique pour le maintien à poste. Des actionneurs gyroscopiques ou roues d'inertie peuvent également être utilisée pour le contrôle d'attitude. Les satellites soviétiques utilisent la propulsion électrique depuis des décennies, une technologie qui commence seulement à devenir fréquente dans les pays occidentaux en particulier pour le maintien à poste nord-sud des satellites géostationnaires et la rehausse de leur orbite. Les sondes interplanétaires utilisent pour la plupart des moteurs chimiques, cependant quelques essais d'utilisation de moteur ionique ( Dawn et Deep Space 1) ou à effet Hall ont démontré leur efficacité.

Besoin

Les satellites artificiels doivent être placés sur orbite de manière précise par un lanceur. Une fois sur leur orbite, ils doivent la plupart du temps contrôler leur attitude de manière à ce qu'ils soient correctement pointés vers la Terre, le Soleil ou d'autres astres dans le cas de missions astronomiques [1]. Les satellites en orbite autour d'astres comportant une atmosphère doivent également compenser la traînée provoquée par l' atmosphère résiduelle. Il est ainsi nécessaire d'effectuer des petites corrections d'orbite régulièrement pour pouvoir rester sur orbite basse pour une longue période [2]. Beaucoup de satellites modifient également leur orbite au cours de leur mission pour remplir leurs objectifs ce qui demande également un système de propulsion spatiale. Ces changements dépendent des besoins [3]. Dans la plupart des cas, la fin des réserves de carburant du système propulsif est synonyme de fin de vie pour l'engin spatial.

Les engins spatiaux qui voyagent au-delà de l'orbite terrestre ont également besoin de se propulser dans l'espace. Une fois lancé depuis la Terre comme les satellites habituels, ces vaisseaux interplanétaires doivent utiliser un système de propulsion pour quitter l'orbite terrestre et naviguer dans le système solaire. Les sondes spatiales corrigent habituellement leur trajectoire par de petits ajustements successifs au cours de leur croisière [4]. Durant le transit entre deux planètes les sondes poursuivent leur trajectoire sans propulsion. La trajectoire la plus efficace en termes de propulsion entre deux orbites elliptiques sur un même plan est appelée orbite de transfert de Hohmann. Partant d'une orbite circulaire, une courte poussée dans la direction de son mouvement entraîne le vaisseau sur une orbite elliptique le menant jusqu'à la seconde orbite circulaire, d'altitude plus élevée, où il accélère à nouveau pour rendre son orbite circulaire, complétant ainsi le transfert [5]. Certaines méthodes exotiques comme l' aérofreinage sont parfois utilisées pour réaliser les ajustements finaux d'une trajectoire [6].

Le concept de voile solaire permettrait, selon ses promoteurs, des voyages interstellaires
Vue d'artiste d'une voile solaire

Certaines méthodes de propulsion comme les voiles solaires produisent une poussée très faible mais continue [7]. Un véhicule interplanétaire utilisant de tels systèmes de propulsion ne peut utiliser une orbite de transfert de Hohmann, basé sur le caractère impulsionnel de l'accélération donnée en début et en fin de transfert. Par conséquent les systèmes propulsifs de faible poussée utilisent des stratégies complexes de direction de la poussée. Le concept de voile solaire a été démontré par le projet japonais IKAROS.

Les vaisseaux interstellaires auront besoin d'autres méthodes de propulsion. Aucun vaisseau de ce type n'a été construit même si de nombreux concepts ont été proposés. Les distances astronomiques séparant les étoiles entre elles requièrent des vitesses très importantes pour que le voyage se déroule dans des délais raisonnables. Accélérer à de telles vitesses puis ralentir à l'approche de la destination sera un défi pour les concepteurs de tels vaisseaux [8].

La force de gravité à la surface de la Terre est relativement élevée. La vitesse nécessaire pour pouvoir quitter le champ d'influence gravitationnelle de la Terre est environ de 11,2 km/s. Les humains étant habitués à une accélération gravitationnelle de 1 g soit environ 9,8 m⋅s-2. Un système de propulsion idéal pour simuler les conditions de gravité terrestre accélérerait donc à 1 g. Le corps humain supporte néanmoins des accélérations plus fortes pour des périodes de temps réduites. Cette gravité artificielle permettrait en outre de résoudre les problèmes liés à la micropesanteur comme la nausée ou les pertes osseuses et musculaires.

Other Languages