Physique statistique

La physique statistique a pour but d'expliquer le comportement et l'évolution de systèmes physiques comportant un grand nombre de particules (on parle de systèmes macroscopiques), à partir des caractéristiques de leurs constituants microscopiques (les particules). Ces constituants peuvent être des atomes, des molécules, des ions, des électrons, des photons, des neutrinos, ou des particules élémentaires. Ces constituants et les interactions qu'ils peuvent avoir entre eux sont en général décrits par la mécanique quantique, mais la description macroscopique d'un ensemble de tels constituants ne fait, elle, pas directement appel (ou en tout cas pas toujours) à la mécanique quantique. De fait, cette description macroscopique, en particulier la thermodynamique, a été obtenue pour partie avant le développement de la mécanique quantique en tant que théorie de la physique, essentiellement dans la seconde moitié du e siècle.

On distingue la physique statistique d'équilibre (au sens d' équilibre thermodynamique), auquel cet article est consacré, de la physique statistique hors d'équilibre.

Historique

Mouvement brownien d'une particule.

La physique statistique (appelé aussi « thermodynamique statistique ») fut introduite initialement sous la forme de la théorie cinétique des gaz à partir du milieu du e siècle, principalement par Kelvin, Maxwell et Boltzmann. Cette première approche visait à proposer un modèle simple de la matière à l'échelle atomique, et en particulier des collisions entre atomes ou molécules, pour reproduire le comportement de certaines quantités macroscopiques. C'est à cette époque que l'interprétation de la pression comme mesure de la quantité de mouvement des constituants d'un gaz a été formalisée.

La mécanique statistique fut formalisée en 1902 par Gibbs [1], son formalisme permettant de généraliser et de justifier a posteriori les principes de la thermodynamique d'équilibre.

Les premières extensions de la physique statistique, par rapport à la mécanique statistique, ont été l'introduction des propriétés électriques et magnétiques de la matière au sein des modèles, permettant la description des transitions de phase dans les matériaux magnétiques ou diélectriques, comme la transition ferromagnétique.

Une autre étape importante fut la modification des formules statistiques, entre les années 1920 et 1930, pour tenir compte des effets de l'indiscernabilité au niveau quantique des particules ( principe d'exclusion de Pauli). Cette modification fut effectuée par Bose et Einstein pour les systèmes de particules de spin entier ( bosons) et par Fermi et Dirac pour les systèmes de particules de spin demi-entier ( fermions).

Other Languages