Paramètres de Milanković

Page d'aide sur l'homonymie Pour les articles homonymes, voir Paramètre (homonymie).

Les paramètres de Milanković[1] est le nom donné aux paramètres astronomiques terrestres qui ont un effet sur les changements climatiques. On parle aussi de cycles de Milanković. Ces paramètres sont l'excentricité, l'obliquité et la précession. La terminologie de « paramètres de Milankovitch » est surtout utilisée dans le cadre de la théorie astronomique des paléoclimats.

Joseph-Alphonse Adhémar, James Croll et Milutin Milanković sont les principaux scientifiques ayant avancé l'idée que ces trois paramètres interviennent dans les variations climatiques naturelles, en particulier sur Terre. Cette hypothèse n'a été soutenue par des données expérimentales cohérentes qu'en 1976, avec l'article fondamental de Hays (en), John Imbrie et Shackleton[2].

Ces changements climatiques naturels ont pour principale conséquence les périodes glaciaires et interglaciaires. Leur étude en termes de phénomènes périodiques est du ressort de la cyclostratigraphie.

Les paramètres de la Terre

La théorie des paramètres de Milanković s'applique à toutes les planètes. Le climat de Mars a notamment été étudié (cf. la théorie astronomique des paléoclimats). Pour la suite, nous étudierons le cas de la Terre en utilisant un système de coordonnées écliptiques dans lequel le soleil sera fixe. Lorsque cela n'est pas précisé, l'hémisphère nord est pris en exemple pour les étés ou les hivers.

L'excentricité de l'orbite terrestre

Orbite à excentricité nulle.

L'orbite de la Terre est une ellipse dont le Soleil occupe l'un des foyers. L' excentricité de l'ellipse est une mesure de la différence entre cette ellipse et le cercle. La forme de l'orbite terrestre varie dans le temps entre une forme quasi-circulaire (excentricité faible de 0,005) et une forme plus elliptique (excentricité élevée de 0,058). La principale composante de cette variation fluctue sur une période de 413 000 ans. D'autres composants de cette variation fluctuent sur des périodes entre 95 000 et 125 000 ans. L'excentricité actuelle de l'orbite de la Terre est 0,017.

Cette excentricité est due aux attractions gravitationnelles exercées entre la Terre et les autres planètes du système solaire ainsi que le Soleil, selon les lois de Newton.

En 2015, une nouvelle étude[Laquelle ?][3] montre un autre facteur orbital de longue durée agissant sur l'excentricité de l'orbite terrestre tous les 9 millions d'années, probablement causé par l'interaction avec la planète Mars.

L'obliquité terrestre

Variation de l'obliquité terrestre

L'obliquité de la terre, aussi appelée inclinaison terrestre, correspond à l'angle entre son axe de rotation et un axe perpendiculaire au plan de son orbite. L'obliquité terrestre varie entre 22,1° et 24,5° approximativement tous les 41 000 ans. Quand l'obliquité croit, chaque hémisphère reçoit plus de radiation du soleil en été et moins en hiver. Cette obliquité est due elle aussi aux interactions gravitationnelles que la Terre subit de la part des planètes. Cette variation est faible par rapport à la variation de l'obliquité martienne qui varie entre 14,9° et 35,5°. Actuellement, la Terre possède une obliquité de 23,44°, ce qui correspond à une valeur moyenne entre les deux extrema. L'obliquité est dans une phase descendante et atteindra son minimum dans environ 10 000 ans. En prenant comme seul paramètre d'influence l'obliquité, les étés deviendraient moins chauds et les hivers moins froids.

La précession terrestre

La précession terrestre

La Terre ne tourne pas sur elle-même comme un ballon parfaitement sphérique mais plutôt comme une toupie car elle est soumise à la précession. Cette précession provient du fait que les attractions du Soleil et de la Lune ne sont pas uniformes sur Terre à cause du bourrelet équatorial de la Terre. Ceci a deux conséquences différentes.

D'un côté, cela va influer sur l'indication du Pôle Nord céleste (quelle étoile nous indique le nord). Reprenons pour cela notre toupie :

La toupie tourne dans un premier temps droite puis en perdant sa vitesse, sa tige va commencer à dessiner une sorte de cercle, ou de cône.

Cette tige sur Terre est en réalité l'axe nord-sud (passant par les deux pôles géographiques), cet axe dessine dans l'espace un cône par rapport à l'axe perpendiculaire au plan de l'écliptique. L'axe nord-sud effectue un tour complet en 25 760 ans. Aujourd'hui, α Ursae Minoris, appelée étoile polaire, se situe à 0,8° du pôle Nord céleste.

D'un autre côté, cela influe sur ce que l'on appelle la précession des équinoxes (ce qui détermine les « changements de saisons » astronomiquement parlant).
Le point vernal rétrograde (se déplace vers l'ouest) de 50,38″ par an, mais la précession due aux autres planètes du système solaire (donc hors Soleil et Lune) est de 0,12″ dans le sens inverse ; donc la précession se fait de 50,26″ par an vers l'ouest.

La nutation

La précession de l'axe de rotation terrestre dessine un cercle sur la sphère céleste. Cependant ce cercle n'est pas parfait. L'attraction de la Lune, et dans une moindre mesure du Soleil, entraîne ce qu'on appelle la nutation. En effet, la Lune attire la Terre (nous pouvons d'ailleurs le voir avec le phénomène des marées) et cette attraction se remarque par une légère oscillation de l'axe de rotation terrestre. Cette oscillation parcourt un cycle complet en 18,6 années.

Le phénomène résulte du fait que l'influence de la Lune n'est pas toujours identique au cours du temps : elle est minimale lorsque la distance angulaire entre la Lune et l'équateur est la plus petite, elle est maximale lorsque la distance est la plus grande. Comme ce phénomène n'est pas très influent pour le sujet, nous allons l'ignorer pour les conséquences des paramètres de Milanković.

Other Languages