Optimisation de code

En programmation informatique, l'optimisation est la pratique qui consiste généralement à réduire le temps d'exécution d'une fonction, l'espace occupé par les données et le programme, ou la consommation d'énergie.

La règle numéro un de l'optimisation est qu'elle ne doit intervenir qu'une fois que le programme fonctionne et répond aux spécifications fonctionnelles. L'expérience montre qu'appliquer des optimisations de bas niveau du code avant que ces deux conditions ne soient réalisées revient le plus souvent à une perte de temps et s'avère néfaste à la clarté du code et au bon fonctionnement du programme :

« L'optimisation prématurée est la source de tous les maux. »

—  Donald Knuth, citant Dijkstra

Cependant cette citation, tronquée, est très souvent mal interprétée. La version complète étant :

« On devrait oublier les petites optimisations locales, disons, 97 % du temps : l'optimisation prématurée est la source de tous les maux [1]. »

—  Donald Knuth

La citation originale indique très clairement que cette règle ne doit s'appliquer qu'aux optimisations locales, de bas niveau (réécriture en assembleur, déroulage de boucle, etc.) et pas aux optimisations de haut niveau concernant le choix des algorithmes ou l'architecture d'un projet. Au contraire plus le projet grandit et plus ces optimisations de haut niveau seront difficiles et coûteuses (en termes de temps, difficulté et budget), voire impossible, à effectuer.

La plupart des compilateurs récents pratiquent de façon automatique un certain nombre d'optimisations qu'il serait fastidieux d'effectuer manuellement et qui rendraient le code source moins lisible.

L'optimisation manuelle locale peut s'avérer nécessaire dans des cas très spécifiques, mais les mesures montrent que sur des machines RISC qui possèdent un nombre élevé de registres et où l'efficacité demande le regroupement des instructions identiques pour bénéficier de l'effet pipeline, l'optimiseur d'un compilateur C fournit souvent un code plus efficace que celui qui serait écrit en assembleur par un programmeur expérimenté (ce qui n'était jamais le cas sur les machines CISC). Et de surcroit ce code est bien plus facile à maintenir, car les instructions en C restent dans un ordre lié à la seule intelligibilité du code et non aux spécificités de la machine : dans les optimiseurs actuels, en effet, les ordres machines associés à une instruction ne se trouvent plus nécessairement en position contiguë, pour des raisons d'efficacité d'exécution. Cela rend le code assembleur généré particulièrement indéchiffrable.

Pratique de l'optimisation

Première approche

Avant de commencer l'optimisation, il faut savoir mesurer la vitesse du code. Pour cela il faut choisir un paramètre, de préférence simple et mesurable. Ceci peut être par exemple le temps de traitement sur un jeu de donnée précis, ou le nombre d'images affichées par seconde, ou encore le nombre de requêtes traitées par minute.

Une fois le paramètre de mesure déterminé, il faut mesurer le temps passé dans chacune des parties du programme. Il n'est pas rare que 80 % à 90 % du temps soit consacré à l'exécution de 10 % du code (les boucles critiques). Les chiffres varient en fonction de la taille et de la complexité des projets. Il faut localiser ces 10 % de code pour être le plus rentable dans ses optimisations. Cette étape de localisation peut être réalisée à l'aide d'outils spécialisés d'instrumentation du code nommés profilers. Ils sont chargés de compter le nombre d'exécutions de chaque fonction et de cycles du microprocesseur correspondants au cours de l'exécution.

Ensuite, on itère sur la section la plus consommatrice de ressource autant de fois que nécessaire cette boucle :

  • optimisation d'une partie du code ;
  • mesure du gain de performances.

Seconde approche

On peut optimiser un programme à plusieurs niveaux :

  • au niveau algorithmique, en choisissant un algorithme de complexité inférieure (au sens mathématique) et des structures de données adaptées ;
  • au niveau du langage de développement, en ordonnant au mieux les instructions et en utilisant les bibliothèques disponibles ;
  • en utilisant localement un langage de bas niveau, qui peut être le langage C ou, pour les besoins les plus critiques, le langage assembleur.

On ne passe au niveau supérieur d'optimisation qu'une fois qu'on a épuisé les possibilités d'un niveau. L'utilisation d'un langage de bas niveau sur l'ensemble d'un projet pour des raisons de rapidité est l'une des erreurs les plus communes et les plus coûteuses que puisse faire un projet industriel.

L'optimisation de code est considéré par beaucoup de développeurs amateurs comme un art un peu magique et, pour cette raison, comme l'une des parties les plus excitantes de la programmation. Ceci les conduit à croire qu'un bon programmeur est une personne qui optimise d'emblée le programme. Cependant l'expérience montre qu'elle ne peut pallier une mauvaise conception initiale. C'est dans la conception que l'expérience du développeur joue le plus. Par ailleurs, dans un nombre majoritaire et grandissant de cas, le « bon programmeur » est moins celui qui écrit du code astucieux (l'optimiseur s'en chargera le plus souvent mieux que lui) que celui qui écrit du code lisible et aisé à maintenir.

Une bonne connaissance des techniques de structures de données ainsi que des algorithmes (même sans aller jusqu'aux considérations poussées de la théorie de la complexité algorithmique) se montre bien plus féconde que celle d'un langage d'assemblage. Lorsqu'on a déterminé l'algorithme le plus adéquat, les optimisations les plus efficaces peuvent être obtenues en utilisant le chemin suivant :

  • écriture du code critique dans un langage de haut niveau (comme Scheme ou Common Lisp) ;
  • application de transformations mathématiques successives qui préservent la spécification du programme tout en réduisant la consommation des ressources ;
  • traduction du code transformé dans un langage de bas niveau (langage C).

Dans la pratique, les performances des machines actuelles font que des applications comportant beaucoup d' entrées-sorties lentes peuvent faire l'économie de ces trois étapes et se rédiger directement dans un langage comme Haskell. L'application bien connue nget, qui moissonne systématiquement les images publiées dans les forums Usenet, avait dans sa première implémentation été écrite en Haskell. La version en C n'en a été qu'une traduction qui ne se révèle pas plus performante pour ce type d'application. Une application limitée principalement par le CPU et la vitesse de la mémoire par contre pourra gagner énormément à être écrite dans un langage tel que le C ou le C++.

Other Languages