Dioptre

Page d'aide sur l'homonymie Pour les articles homonymes, voir la dioptre qui est un instrument utilisé anciennement pour l' arpentage et l' astronomie.

En optique, un dioptre est une surface séparant deux milieux transparents homogènes et isotropes, d' indices de réfraction différents.

On parle de dioptre plan si la surface de séparation est un plan, de dioptre sphérique si c'est une sphère (ou tout au moins un calotte sphérique).

Si la lumière se propage en ligne droite dans un milieu homogène et isotrope, elle est déviée lors du passage d'un dioptre : il y a réfraction.

De façon générale, il y a à la fois réfraction et réflexion : une partie de la lumière est réfléchie à la surface du dioptre (environ 3%) et l'autre partie est réfractée lors de son passage dans l'autre milieu.

Le changement de direction au niveau du dioptre est décrit par les lois de Snell-Descartes qui fondent l' optique géométrique. Ces lois peuvent se représenter graphiquement en les appliquant à un rayon unique - dit incident - interceptant le dioptre en un point dit point d'incidence. Pour comprendre l'effet d'un dioptre sur la lumière, il faut considérer un nombre minimal de rayons de façon à représenter le faisceau de lumière.

Dioptre plan

Question de stigmatisme

Non stigmatisme du dioptre plan : il n'y a pas d'image
Condition pour un stigmatisme approché

Une des conséquences des lois de Snell-Descartes est que le dioptre plan est un système non-stigmatique. L'illustration ci-dessus montre que la lumière issue d'un point placé dans un aquarium, par exemple, donne des rayons réfractés dans l'air qui ont des directions sans point commun.

Pourtant, lorsqu'on regarde un poisson, on le voit bien ! C'est donc que l'œil du poisson, par exemple, constitue un objet lumineux qui forme une image sur la rétine de l' œil de l'observateur. Ceci n'est possible que parce que le faisceau de lumière est suffisamment étroit pour que la tache sur la rétine apparaisse comme un point. On est bien alors dans un cas de stigmatisme approché.

C'est ce phénomène qui permet d'expliquer l'expérience du « bâton brisé » que l'on montre en général pour illustrer la réfraction.

Réfraction limite et réflexion totale interne

Au-delà d'une certaine inclinaison, les rayons ne franchissent plus le dioptre : ils sont réfléchis.

On voit que si n1 > n2 (par exemple le passage des rayons de l'eau vers l'air, n1 représentant l'indice de réfraction de l'eau et n2 celui de l'air), alors pour des valeurs de sin(θ1) proches de 1, c'est-à-dire pour des incidences rasantes (rayon incident proche de la surface), on obtient par cette formule une valeur de sin(θ2) supérieure à 1. Ceci est évidemment impossible, cela correspond à des situations où il n'y a pas de réfraction mais uniquement de la réflexion : on parle de réflexion totale interne, laquelle se produit lorsque l'angle d'incidence dépasse l'angle critique.

L'angle critique de réfraction est donc tel que :

Cette propriété est mise à profit dans certains systèmes réflecteurs ( prisme à réflexion totale) et les fibres optiques.

Other Languages
español: Dioptrio
italiano: Diottro