Construction des entiers relatifs

Article général Pour un article plus général, voir Entier relatif.

En mathématiques, la construction du groupe abélien des entiers relatifs est un exemple standard de symétrisation d'un monoïde commutatif, en l'occurrence : le monoïde des entiers naturels.

La structure supplémentaire d' anneau unifère et la relation d'ordre seront seulement esquissées.

Construction de l'ensemble Z

Représentation des classes d'équivalence pour les nombres de -5 à 5
Les points rouges représentent les couples d'entiers modélisant les relatifs. Les points rouges reliés par des pointillés bleus appartiennent à la classe d'équivalence du nombre relatif situé dans le prolongement de la ligne, lui aussi en bleu.

On sait déjà que l'ensemble des entiers naturels, muni de la loi interne addition, est un monoïde commutatif ; donc notre but est simplement de rajouter un opposé ( élément symétrique pour l'addition) pour chaque entier non nul. Il ne s'agit pas de rajouter brutalement un élément, il faut aussi définir l'addition.

C'est pourquoi on va partir de la notion naïve d' entier relatif, que l'on suppose déjà connue, pour construire l'objet mathématique correspondant. Si on veut définir avec des entiers naturels, on a envie de le voir comme , ou comme , ou… ; bref, on a envie de le voir comme la différence de deux entiers naturels. Cela pose une difficulté, car on voit d'une part que l'écriture n'est pas unique, et d'autre part, que cela fait intervenir une opération, la soustraction, qui n'a pas toujours un sens avec les entiers naturels.

On va donc considérer des couples d'entiers, de la forme , et considérer que le couple correspond à l'entier relatif naïf  ; et comme on a vu qu'il n'est pas raisonnable de prendre comme ensemble des entiers relatifs, on va regrouper les couples qui correspondent au même entier relatif naïf.

Pour cela, on va définir sur une relation d'équivalence , par : . Intuitivement, on est en train d'écrire que deux couples sont égaux si quand on soustrait le second entier du couple au premier on obtient le même entier relatif. Mais on n'utilise que la somme pour définir , donc cette définition n'utilise pas d'objet naïf.

Les relations d'équivalences sont faites pour quotienter ; on définit donc :

Other Languages