Constante de Planck

Constante de Planck
Description de cette image, également commentée ci-après
L'énergie d'un électron dans un atome est quantifiée.
Unités SIjoule par hertz (J.s)
DimensionM·L2·T-1
NatureGrandeur scalaire
Symbole usuel
Expressions



=
Page d'aide sur l'homonymie Pour les articles homonymes, voir Planck.
Crystal Clear app fonts.svg Cette page contient des caractères spéciaux ou non latins. Si certains caractères de cet article s’affichent mal (carrés vides, points d’interrogation…), consultez la page d’aide Unicode.

En physique, la constante de Planck, notée , est utilisée pour décrire la taille des quanta. Nommée d'après le physicien Max Planck, cette constante joue un rôle central dans la mécanique quantique. Elle relie notamment l’énergie d’un photon () à sa fréquence (lettre grecque nu) : .

Dans de nombreux cas, en mécanique quantique, il est plus naturel de parler de la pulsation (ou fréquence angulaire) que de la fréquence proprement dite, c'est-à-dire d'exprimer la fréquence en radian par seconde et non en hertz (ce qui correspond à la vitesse de rotation de la phase dans l'espace réciproque). Dans ces formules, il est le plus souvent utile d'absorber le facteur 2π dans la constante elle-même, ce qui conduit à utiliser la constante de Planck réduite (ou constante de Dirac), égale à la constante de Planck divisée par 2π, et notée (h-barre) :

Présentation

Historique

Cette constante a été initialement introduite par Max Planck dans l'étude de la radiation du corps noir, comme rapport de proportionnalité entre l'incrément minimal d'énergie E d'un oscillateur électriquement chargé et la fréquence f de l'onde électromagnétique associée. Par la suite, en 1905, cet incrément quantifié d'énergie a été relié par Albert Einstein à un quantum de l'onde électromagnétique elle-même, ce quantum lumineux se comportant parfois comme une particule électriquement neutre et non comme une onde électromagnétique. Ce quantum fut finalement dénommé le photon. La relation ainsi mise en évidence par Planck et Einstein relie l'énergie E d'un photon avec sa fréquence f ou sa fréquence angulaire ω :

L'énergie en question, de l’ordre de 4 × 10−19 J pour un photon de lumière visible, est extrêmement petite par rapport aux ordres de grandeur des énergies quotidiennes.

Dans de nombreux cas, la quantification de l'énergie implique que seuls certains niveaux d'énergie sont autorisés, et les valeurs intermédiaires ne peuvent pas être atteintes[1].

Cette constante a joué un rôle primordial dans le modèle de l'atome d'hydrogène, proposé en 1913 et connu à présent sous le nom de modèle de Bohr afin d'expliquer la présence des raies spectrales qui traduisent le fait que les fréquences du mouvement de l'électron autour du noyau central ne sont pas quelconques, et de même que l'énergie correspondante est parfaitement bien déterminée. Niels Bohr admit qu'un électron sur des orbites stationnaires ne peut pas émettre un rayonnement, contrairement à ce qui était soutenu en Électromagnétique Classique. Il émit l'hypothèse qui devint la 1re condition de quantification de Bohr, à savoir que l'action de la quantité de mouvement sur une orbite complète est un multiple entier de (constante de Planck). Idée également connue comme "hypothèse quantique de Planck".

Faisant suite à la découverte de Planck, il fut reconnu que d'une manière générale l'action d'un système physique ne pouvait pas prendre n'importe quelle valeur, mais était également quantifiée par un quantum d'action à présent dénommé constante de Planck. Cette approche correspond à la première interprétation de la mécanique quantique, développée par Bohr et Sommerfeld, pour laquelle les particules existent et ont des trajectoires, mais sont des variables cachées contraintes par les lois de la mécanique quantique. Cette interprétation est à présent désuète, remplacée par une approche où la notion même de trajectoire n'existe plus, et où toutes les particules sont représentées par une fonction d'onde s'étendant dans l'espace et le temps : cette approche ne permet plus de définir l'action au sens classique du terme.

Plus généralement, en 1924, l'hypothèse de De Broglie sur la dualité onde-corpuscule généralise cette relation à une particule quelconque (et non uniquement le photon) en reliant la quantité de mouvement d'une particule et sa longueur d'onde par une équation simple, hypothèse confirmée expérimentalement peu de temps plus tard, posant ainsi les bases de la mécanique quantique :

Constante réduite

L'hypothèse de De Broglie conduisit Erwin Schrödinger à proposer en 1925 que l'évolution d'une particule de masse m dans un champ d'énergie potentielle est décrite par une fonction d'onde qui associe à chaque point de l'espace un nombre complexe (analysable en un module et une phase) et qui satisfait à l'équation suivante :

L'amplitude de la fonction d'onde normalisée est une distribution de probabilité : le carré de la fonction d'onde donne la probabilité de mesurer la présence de la particule au point  ; et la phase quantique est une rotation pure dans le plan complexe, dont la fréquence de rotation dépend de l'énergie cinétique de la particule[2].

Si par exemple le hamiltonien de la particule ne dépend pas explicitement du temps, la fonction d'onde peut se décomposer en une fonction de l'espace et une fonction du temps. Une résolution par séparation des variables montre que l'équation est alors de la forme :

avec

De ce fait, dans de nombreux cas, en mécanique quantique, il est plus naturel de parler de la fréquence angulaire que de la fréquence proprement dite, c'est-à-dire d'exprimer la fréquence en radian par seconde et non en hertz (ce qui correspond à la vitesse de rotation de la phase dans l'espace réciproque). Dans ces formules, il est le plus souvent utile d'absorber le facteur 2π dans la constante elle-même, ce qui conduit à utiliser la constante de Planck réduite (ou constante de Dirac), égale à la constante de Planck divisée par 2π, et notée (h-barre) :

L'énergie d'un photon de fréquence angulaire ω=2πf s'écrit alors :

De même, le moment cinétique est alors relié au nombre d'onde par :

Ces deux relations sont les composantes temporelles et spatiales d'une formule de relativité restreinte portant sur des quadrivecteurs :

Other Languages
العربية: ثابت بلانك
azərbaycanca: Plank sabiti
беларуская: Пастаянная Планка
Bahasa Indonesia: Konstanta Planck
한국어: 플랑크 상수
lietuvių: Planko konstanta
latviešu: Planka konstante
Bahasa Melayu: Pemalar Planck
مازِرونی: پلانک ثابت
norsk nynorsk: Planckkonstanten
Piemontèis: Costanta ëd Planck
پنجابی: پلانک نمبر
srpskohrvatski / српскохрватски: Planckova konstanta
Simple English: Planck constant
slovenščina: Planckova konstanta
Türkçe: Planck sabiti
татарча/tatarça: Планк даими зурлыгы
українська: Стала Планка
Tiếng Việt: Hằng số Planck
Bân-lâm-gú: Planck siông-sò͘