Classe (mathématiques)

Page d'aide sur l'homonymie Pour les articles homonymes, voir Classe.

En mathématiques, la notion de classe généralise celle d'ensemble. Les deux termes sont parfois employés comme synonymes, mais la théorie des ensembles distingue ces deux notions. Un ensemble peut être vu comme une collection d'objets, mais aussi comme un objet mathématique, qui en particulier peut lui-même appartenir à un autre ensemble. Ce n'est pas forcément le cas d'une classe, qui est une collection d'objets que l'on peut définir, dont on peut donc parler, mais qui ne forme pas nécessairement un ensemble. Quand une classe n'est pas un ensemble, elle est appelée classe propre. Elle ne peut alors être élément d'une classe (ni, a fortiori, d'un ensemble).

Les paradoxes de la théorie des ensembles, comme le paradoxe de Russell, montrent la nécessité d'une telle distinction. Ainsi la propriété « ne pas appartenir à soi-même » (x ∉ x) définit une classe mais pas un ensemble. L'existence d'un tel ensemble mènerait à une contradiction.

À l'aube du XXe siècle, certains logiciens et mathématiciens comme Ernst Schröder, Giuseppe Peano ou Bertrand Russell emploient le terme « classe » la plupart du temps pour ce qui est appelé aujourd'hui « ensemble »[1]. Cet usage perdure dans certains cas particuliers. Ainsi pour la notion usuelle de relation (dont le graphe est un ensemble de couples), une classe d'équivalence est un ensemble. Si on élargit aux classes propres, on ne peut plus parler d'ensemble quotient. Parfois les deux termes sont employés pour améliorer la clarté d'expression : dans certains contextes, on peut préférer parler de classe d'ensembles plutôt que d’ensemble d'ensembles sans y attacher un sens particulier.

Notion de classe

Les classes en théorie des ensembles

Pour fixer le vocabulaire, on va parler dans la suite de collection pour désigner un ensemble au sens intuitif, y compris dans un modèle de la théorie des ensembles — c’est une terminologie souvent utilisée, mais non universelle. On sait, depuis la découverte autour de 1900 des paradoxes de la théorie des ensembles, dont le plus simple est le paradoxe de Russell, que certaines collections d’objets, dont on peut parler dans le langage de la théorie, comme la collection des ensembles qui n’appartiennent pas à eux-mêmes, ne peuvent être des ensembles, sous peine de voir la théorie devenir contradictoire. Pour y remédier, Zermelo choisit de ne conserver que des cas particuliers de l’axiome de compréhension non restreint, qui dit que toute propriété — par exemple : « ne pas appartenir à soi même » — définit un ensemble. En théorie des ensembles, ces collections d’objets, qui sont définies par une propriété de leurs éléments, mais qui ne sont pas forcément des ensembles au sens de la théorie, sont appelées classes. Les classes qui ne sont pas des ensembles sont appelées classes propres. On peut voir celles-ci comme des collections que l’on peut décrire dans la théorie, mais qui sont trop « grosses » pour être des ensembles.

Dans une théorie des ensembles comme ZFC, les classes sont des collections qui sont identifiées par une propriété de leurs éléments exprimée dans le langage de cette théorie. On peut donc les identifier aux prédicats du langage. Il est tout de même parfois plus intuitif de parler de classe, avec le langage ensembliste afférent (intersection, réunion, etc.), que de parler de prédicat. Deux prédicats désignent la même classe si et seulement s'ils sont équivalents : c'est l'égalité extensionnelle. Elle coïncide bien, dans le cas des ensembles, avec l'égalité définie sur ceux-ci par l'axiome d'extensionnalité. On peut manipuler les classes avec les opérations correspondant aux opérations logiques usuelles sur les prédicats : opérations booléennes, disjonction — donc réunion —, conjonction — donc intersection et produit cartésien —, négation — donc passage au complémentaire —, quantificateurs — donc en particulier projection —, etc. Cependant les classes ne sont pas des objets de la théorie. Il n’est donc pas question de classe de classes, et encore moins d’ensemble de classes !

Notations

L’usage est d’utiliser des lettres majuscules pour les classes. On peut tout à fait conserver, pour noter les classes, les notations usuelles pour les prédicats, ou, quand on sait ce que l’on fait, étendre les notations ensemblistes usuelles. L’appartenance à une classe « x appartient à la classe V » se note, en conservant la forme des prédicats, V(x), ou, par abus de notation, en étendant l’usage du symbole ∈, xV. Dans ce dernier cas un nom de classe ne peut figurer qu’à droite du signe d’appartenance ; il s’agit d’une abréviation pour V(x) — en notant de la même façon une classe et un prédicat qui la définit.

De la même façon, pour les opérations ensemblistes usuelles, on peut utiliser les connecteurs logiques ou étendre l’usage des notations usuelles. Par exemple, pour l’intersection de deux classes V et W, on peut écrire V(x) ∧ W(x) ou VW.

Toujours dans le même esprit on écrit souvent V = W pour indiquer que les deux classes V et W sont égales ; cela se traduit en langage ensembliste par l’équivalence logique ∀x [V(x) ↔ W(x)]. Ainsi l’égalité de l’ensemble a et de la classe V peut se noter a = V ; c’est une abréviation pour l’énoncé ∀x [xaV(x)]. Alors, V étant fixé, le prédicat y = V définit lui-même une classe, qui est la classe vide dès que V est une classe propre — définie par exemple par xx (voir ci-dessous).

Exemples de classes propres

On se place dans une théorie des ensembles comme Z, ZF ou ZFC. Évidemment, grâce au prédicat d’appartenance, tout ensemble a « est » une classe : celle-ci est définie par le prédicat xa. Les paradoxes classiques de la théorie des ensembles fournissent des classes propres.

  • Ainsi, le paradoxe de Russell se reformule, de façon cette fois non contradictoire, en disant que la classe des ensembles qui n’appartiennent pas à eux-mêmes — prédicat xx — est une classe propre.
  • On peut définir le prédicat « être un ordinal » en théorie des ensembles : en prenant la définition de von Neumann, un ordinal est un ensemble transitif — c'est-à-dire que tous ses éléments sont des sous-ensembles — sur lequel l’appartenance définit un bon ordre strict. Le paradoxe de Burali-Forti se reformule en disant que la classe de tous les ordinaux est une classe propre.

On en déduit que d’autres classes sont des classes propres.

  • La propriété « être un ensemble » s'écrit x = x — ou n’importe quelle propriété de x toujours vraie. On peut donc parler de la classe de tous les ensembles. Du schéma d'axiomes de compréhension on déduit que la classe de tous les ensembles n’est pas un ensemble — sinon, la classe des ensembles qui ne s'appartiennent pas en serait un par compréhension. C’est une classe propre.
  • La propriété « avoir un seul élément » s'écrit ∃y [(yx) ∧ ∀z (zxz = y)]. On peut donc parler de la classe des singletons. C’est une classe propre, car sinon, par l’axiome de la paire — dont on déduit que, pour tout ensemble a, {a} est un ensemble — et par l’axiome de la réunion, on en déduirait que la classe de tous les ensembles est un ensemble.
  • En reprenant le raisonnement précédent, on montre que les classes d’équipotence — classes d’équivalence pour la relation « être en bijection », c'est-à-dire avoir le même nombre d’éléments — sont des classes propres.
  • Le dernier résultat montre que, si l’on définit les cardinaux comme des classes d’équipotence, il n’est pas possible de parler d’ensembles voire de classes de cardinaux. On préfère donc définir — dans ZFC, il faut le schéma d'axiomes de remplacement et l’axiome du choix — un cardinal comme un ensemble : un cardinal est un ordinal qui n’est pas équipotent à un ordinal strictement plus petit. Ceci s’exprime dans le langage de la théorie des ensembles ; on peut donc parler de la classe des cardinaux. Cette classe est une classe propre. On peut le montrer en reprenant l’argument du paradoxe de Cantor — tout ensemble a un cardinal par l’axiome du choix — ou en se réduisant à l’un des paradoxes ci-dessus.
Other Languages