Calcul formel

Page d'aide sur les redirections « Calcul symbolique » redirige ici. Pour l'autre signification, voir Calcul ombral.

Le calcul formel, ou parfois calcul symbolique, est le domaine des mathématiques et de l’informatique qui s’intéresse aux algorithmes opérant sur des objets de nature mathématique par le biais de représentations finies et exactes.Ainsi, un nombre entier est représenté de manière finie et exacte par la suite des chiffres de son écriture en base 2. Étant données les représentations de deux nombres entiers, le calcul formel se pose par exemple la question de calculer celle de leur produit.

Le calcul formel est en général considéré comme un domaine distinct du calcul scientifique, cette dernière appellation faisant référence au calcul numérique approché à l'aide de nombres en virgule flottante, là où le calcul formel met l'accent sur les calculs exacts sur des expressions pouvant contenir des variables ou des nombres en précision arbitraire (en).Comme exemples d'opérations de calcul formel, on peut citer le calcul de dérivées ou de primitives, la simplification d'expressions, la décomposition en facteurs irréductibles de polynômes, la mise sous formes normales de matrices, ou encore la résolution des systèmes polynomiaux.

Sur le plan théorique, on s’attache en calcul formel à donner des algorithmes avec la démonstration qu’ils terminent en temps fini et la démonstration que le résultat est bien la représentation d’un objet mathématique défini préalablement. Autant que possible, on essaie de plus d’estimer la complexité des algorithmes que l'on décrit, c'est-à-dire le nombre total d’opérations élémentaires qu'ils effectuent. Cela permet d’avoir une idée a priori du temps d’exécution d’un algorithme, de comparer l’efficacité théorique de différents algorithmes ou encore d’éclairer la nature même du problème.