Atmosphère de Jupiter

Page d'aide sur l'homonymie Pour les articles homonymes, voir Atmosphère.
L'atmosphère de Jupiter
Image illustrative de l'article Atmosphère de Jupiter
La Grande Tache Rouge prise par Voyager 1.
Informations générales
Épaisseur5 000 km[A 1]
Pression atmosphérique20 à 200×103 Pa
Composition volumétrique
Dihydrogène~86 %
Hélium~13 %
Méthane0,1 %
Vapeur d'eau0,1 %
Ammoniac0,02 %
Éthane0,0002 %
Hydrure de phosphore0,0001 %
Sulfure d'hydrogène<0,0001 %

L’atmosphère de Jupiter est la plus importante des atmosphères des planètes du système solaire. Elle est composée principalement d'hydrogène et d'hélium ; les autres composants chimiques sont présents seulement en petite quantité, dont le méthane, l'ammoniac, le sulfure d'hydrogène et l'eau. Ce dernier composant n'a pas été observé directement mais il se trouverait dans les profondeurs de l'atmosphère. Il y a environ trois fois plus d'oxygène, d'azote, de soufre et de gaz nobles dans l'atmosphère jovienne que dans le Soleil[1].

L'atmosphère de Jupiter se caractérise par l'absence de limite inférieure précise et se mélange graduellement aux fluides intérieurs de la planète[2]. De bas en haut, les couches atmosphériques sont la troposphère, la stratosphère, la thermosphère et l'exosphère. Chaque couche a un gradient thermique caractéristique[3]. La plus basse, la troposphère, possède un système complexe de nuages et de brumes, comprenant des couches d'ammoniac, de l'hydrosulfure d'ammonium et de l'eau[4]. Les hauts nuages d'ammoniac visibles sur la « surface » de Jupiter sont organisés en une douzaine de bandes parallèles à l'équateur et sont bordés par des courants atmosphériques (des vents) connus sous le nom de courants-jets. Les courants n'ont pas la même couleur : les foncées sont appelés « bandes », tandis que les clairs sont appelées « zones ». Ces zones, qui sont plus froides que les bandes, correspondent à l'air ascendant, tandis que les bandes sont de l'air descendant[5]. La couleur claire des zones serait due à la glace d'ammoniac ; toutefois ce qui donne aux bandes leurs couleurs sombres n'est pas connu[5]. Les origines de cette structure en bandes et en courants ne sont pas très bien connues, bien que deux types de modèles existent. Les shallow models (en français « modèles peu profonds ») considèrent qu'il s'agit d'un phénomène de surface qui recouvre un intérieur stable. Dans les deep models (en français « modèles profonds »), les bandes et les courants sont les manifestations en surface de la circulation intérieure du manteau de Jupiter fait de dihydrogène[6].

L'atmosphère jovienne présente une grande variété de phénomènes actifs, dont l'instabilité de ses bandes, les vortex (les cyclones et anticyclones), les orages et les éclairs[7]. Les vortex se présentent sous la forme de grandes taches rouges, blanches ou marron. Les deux plus grands sont la Grande tache rouge[8] et Ovale BA[9], qui est aussi rouge. Ces deux vortex, de même que les autres sont des anticyclones. Les anticyclones plus petits tendent à être blancs. Ces vortex semblent être des structures relativement peu profondes avec une profondeur n'excédant pas les 100 kilomètres. Située dans l'hémisphère sud, la grande tache rouge est le plus grand vortex connu du système solaire. Elle est grande comme trois fois la Terre et existe depuis au moins trois cents ans. L'Ovale BA, au sud de la Grande tache rouge, est un anticyclone mesurant un tiers de la taille de la grande tache rouge ayant pris forme en l'an 2000, à la suite de la fusion de trois petits anticyclones[10].

Jupiter connait de puissantes tempêtes, toujours accompagnées d'éclairs. Les tempêtes sont le résultat de convection dans l'atmosphère associée à l'évaporation et à la condensation de l'eau. Elles sont le site de forts mouvements ascendants de l'air, qui mènent à la formation de nuages brillants et denses.

Structure

Dans la littérature scientifique, le niveau où la pression est de 1 bar est considéré comme l'altitude zéro de Jupiter—c'est-à-dire une « surface » de Jupiter[2].

L'atmosphère de Jupiter se subdivise en quatre couches, qui sont par altitude croissante :

Contrairement à l'atmosphère terrestre, Jupiter n'a pas de mésosphère[11]. Jupiter n'a pas non plus de surface solide, et la couche atmosphérique la plus basse, la troposphère, se mélange doucement dans le fluide intérieur de la planète[2]. Ceci est dû au fait que la température et la pression sont bien au-dessus des points critiques de l'hydrogène et de l'hélium, ce qui signifie qu'il n'y a pas de frontière marquée entre les états gazeux et liquide[2].

Puisque la limite inférieure de l'atmosphère ne peut être définie, le niveau de pression de 10 bars, à une altitude de −90 km avec une température de 340 K, est considéré communément comme la base de la troposphère[3].

Structure verticale de l'atmosphère de Jupiter. La pression baisse avec l'altitude. Le niveau noté −132 km est la profondeur maximale atteinte par la sonde atmosphérique Galileo[3].
Altitude Pression Température Commentaire
−90 km 10 bar 340 K Base conventionnelle de la troposphère[3]
3,0 à 7,0 bar Nuages probables de glace d'eau[12]
1,5 à 3,0 bar Nuages probables de glace d'hydrosulfure d'ammonium ou de sulfure d'ammonium[12]
0,7 à 1,0 bar Nuages visibles de glace d'ammoniac[13]
0 km 1 bar Altitude zéro conventionnelle de Jupiter[2]
50 km 0,1 bar 110 K Altitude approximative de la tropopause[3]

La variation verticale de température dans l'atmosphère jovienne suit le même comportement que l'atmosphère terrestre (cf. ci-dessous pour des précisions couches par couches).

Troposphère

La troposphère de Jupiter possède une structure nuageuse complexe. Les nuages visibles, situés dans la région où l'écart de pression va de 0,7 à 1,0 bar, sont faits de glace d'ammoniac[13]. En dessous de ces nuages de glace d'ammoniac, des nuages composés d'hydrosulfure d'ammonium ou de sulfure d'ammonium (entre 1,5–3 bar) et d'eau (3–7 bar) existent probablement[12],[4]. Il n'y a pas de nuages de méthane car la température est trop élevée pour qu'il se condense[4]. Les nuages de vapeur d'eau constituent la couche nuageuse la plus dense et ont une influence importante sur les dynamiques régissant l'atmosphère. C'est une conséquence de l'énergie de condensation de l'eau et de l'abondance de cette dernière par rapport à l'ammoniac et au sulfure d'hydrogène (l'oxygène est plus abondant que l'azote et le soufre)[11]. Plusieurs couches brumeuses troposphériques (à 0,2 bar) et stratosphériques (à 10 mbar) se trouvent sous les couches principales de nuages[14]. La dernière est composée d'hydrocarbure aromatique polycyclique ou d'hydrazine fortement condensé, qui sont générés dans la haute stratosphère (1–100 μbar) à partir du méthane sous l'influence de radiations solaires ultraviolettes (UV)[15].

La température de la troposphère diminue avec l'altitude jusqu'à la tropopause[16], qui est la frontière entre la troposphère et la stratosphère. Sur Jupiter, la tropopause se trouve approximativement 50 km au-dessus des nuages visibles, où la pression et la température sont de 0,1 bar et 110 K[3].

Stratosphère

Dans la stratosphère, l'abondance relative du méthane par rapport au dihydrogène est de 10−4[17], tandis que l'abondance des autres hydrocarbures légers, comme l'éthane et l'acétylène, par rapport au dihydrogène est de 10−6[17].

Dans la stratosphère, la température s'élève à 200 K à la transition avec la thermosphère, à une altitude et pression d'environ 320 km et 1 μbar[3].

Thermosphère

Aurore polaire vu par le télescope spatial Hubble en ultraviolet.

La thermosphère de Jupiter se trouve à une pression inférieure à 1 μbar et présente des phénomènes de lumière du ciel nocturne, des aurores polaires et des émissions de rayon X[18]. Au sein de celle-ci se trouvent les couches où la densité d'électrons et d'ions augmente et forme l'ionosphère[17]. Les hautes températures de la thermosphère (800–1000 K) n'ont pas encore été expliquées[19]; les modèles existants ne les prédisaient pas plus hautes que 400 K[17]. Ceci peut être causé par l'absorption de haut niveau de radiations solaires (UV ou rayons X), en chauffant les particules chargées de la magnétosphère jovienne, ou par dissipation des ondes de gravité vers le haut[20]. La thermosphère et l'exosphère, aux pôles et aux basses, émettent des rayons X, qui furent observés pour la première fois par l'Einstein Observatory en 1983[21]. Les particules énergétiques venant de la magnétosphère de Jupiter créent des aurores brillantes, qui entourent les pôles. Contrairement à leurs analogues terrestres, qui apparaissent seulement lors d'orages magnétiques, les aurores joviennes sont des éléments permanents de l'atmosphère de la planète[21]. La thermosphère de Jupiter a été le premier lieu hors de la Terre où des cations de trihydrogène (H3+) ont été découverts[17]. Cet ion produit de fortes émissions au milieu de la partie infrarouge du spectre lumineux, dans les longueurs d'ondes comprises entre 3 et 5 μm, et est l'élément principal qui diminue la température de la thermosphère[18].

Dans la thermosphère, la température augmente avec l'altitude atteignant jusqu'à 1000 K à près de 1 000 km (la pression y est de 1 nbar)[19].

Exosphère

Comme avec la Terre, la couche atmosphérique supérieure, l'exosphère, n'a pas de limite supérieure bien définie[22]. La densité décroit lentement jusqu'au milieu interplanétaire approximativement 5 000 km au-dessus de la « surface »[17].

Other Languages