Application (mathématiques)

Page d'aide sur l'homonymie Pour les articles homonymes, voir Application.
Pour les applications des mathématiques à d'autres domaines, voir «  Mathématiques appliquées ».
Diagramme représentatif d'une application entre deux ensembles.

En mathématiques, une application est une relation entre deux ensembles pour laquelle chaque élément du premier (appelé ensemble de départ ou source) est relié à un unique élément du second (l’ensemble d'arrivée ou but). Le terme est concurrencé par celui de fonction, bien que celui-ci désigne parfois plus spécifiquement les applications dont le but est un ensemble de nombres et parfois, englobe plus largement les relations pour lesquelles chaque élément de l'ensemble de départ est relié à au plus un élément de l'ensemble d'arrivée [1].

Une application peut avoir des valeurs non numériques, comme celle qui associe à chaque élève d’une classe son jour de naissance, ou l’application qui à chaque carte d’un jeu de 32 associe sa couleur.

Une application est donc un objet issu de la théorie des ensembles, défini par son graphe et associé aux notions d' image et d' antécédent. Elle peut être injective ou surjective selon l'unicité ou l' existence d'un antécédent pour chaque élément de l'ensemble d'arrivée. Une application possédant ces deux propriétés est une bijection, qui admet alors une application réciproque. Les applications peuvent aussi être composées ou restreintes à un sous-ensemble de leur ensemble de départ.

En dehors du contexte de l'analyse, le terme est spécifié entre autres en géométrie affine, en algèbre linéaire, en topologie et dans la théorie des systèmes dynamiques. Il est parfois remplacé par celui d' opérateur ou de morphisme, voire de flèche, notamment en théorie des catégories.

Fonction et application

La notion de fonction en tant que correspondance entre deux types d'objet est relativement ancienne. Mais le terme n'apparait qu'à la fin du XVIIe siècle sous la plume de Leibniz en 1694 [2], il s'agit alors de fonction associée à une courbe géométrique : Leibniz dit ainsi que l'abscisse, l'ordonnée ou le rayon de courbure d'une courbe en un point M est une fonction du point M. Dans la même époque, Newton parle de fluente pour des quantités dépendant d'une variable qu'il appelle le temps (tout en précisant que le rôle joué par le temps, peut l'être par une autre quantité). La notation sous la forme f ne s'est pas mise en place tout de suite. Jean Bernoulli propose en 1698 d'appeler X une fonction de x, puis fx en 1718 [3]. Leibniz invente une notation permettant de travailler sur plusieurs fonctions différentes : et sont ainsi deux fonctions dépendant de x. Euler reprend la notation fx en 1734. Les fonctions sont alors toujours à valeurs numériques (réelles ou complexes) et possèdent en outre des propriétés restrictives (liées à une équation algébrique, continuité eulérienne, développable en série entière...).

Parallèlement se développe, en géométrie, la notion d'application pour des correspondances ponctuelles.

La notion de fonction (ou application) est généralisée d'abord à plusieurs variables numériques, à une variable qui est une courbe ( Vito Volterra), puis Maurice Fréchet en 1904 et Eliakim Hastings Moore prennent l'argument dans un ensemble arbitraire, et Fréchet en 1909 la valeur de la fonction également [3].

Tout au cours du e siècle, dans de nombreux ouvrages universitaires, les termes de fonction et d'application sont synonymes [4], [5], [6]. On introduit parfois certaines nuances : le terme fonction est employé plutôt dans le cas où l'ensemble d'arrivée est numérique, et parfois lorsque l'ensemble de définition n'est pas égal à l'ensemble de départ [1].

Dans les années 1950, l'école Bourbaki tente de définir précisément les deux notions. Ainsi peut-on lire dans un projet de rédaction du Livre I, Chapitre II des Éléments de 1954 [7], les définitions suivantes:

  • La relation R(x,y) est appelée une relation fonctionnelle de type (T × U) si elle satisfait à la condition suivante : quel que soit x, il existe au plus un y tel R(x,y). À toute relation fonctionnelle, on attache un objet nouveau que l'on appelle une fonction [8];
  • On appelle champ de définition de la fonction f l'ensemble des éléments x de E pour lesquels il existe y tel que R(x,y). C'est une partie E de E. On dit que f est définie sur E et dans E [9].
  • Au lieu de parler d'une fonction définie sur E et prenant ses valeurs dans F, on parle d'une application de E dans F [10].

Même si, dans la rédaction finale des Éléments de 1970 [11] la fonction est toujours définie sur son ensemble de départ, cette distinction est reprise dans l'enseignement français du secondaire, premier et second cycle, quand, à la suite de la Commission Lichnerowicz, se mettent en place les nouveaux programmes, à partir de 1968. Ainsi voit-on dès la 6e, illustrées par des diagrammes sagittaux, les définitions suivantes [12]:

  • les relations telles que, de chaque élément de l'ensemble de départ, il part au plus une flèche, s'appellent des fonctions;
  • les relations telles que, de chaque élément de l'ensemble de départ, il part exactement une flèche, s'appellent des applications.

En pratique, le fait qu'il suffise de réduire l'ensemble de départ d'une fonction à son ensemble de définition pour la transformer en application rend peu utile ce distinguo.

Cette distinction ne commence à disparaitre des ouvrages scolaires qu'à partir de 1985, à l'adoption de nouveaux programmes mais on trouve encore des ouvrages récents dans lesquels cette distinction est présente [13], [14], [15].

Other Languages
íslenska: Vörpun
日本語: 写像
한국어: 맵핑 (수학)
македонски: Пресликување
norsk nynorsk: Avbilding i matematikk
slovenščina: Preslikava
svenska: Avbildning
Tiếng Việt: Ánh xạ
中文: 映射
粵語: 轉換