Équations de Navier-Stokes

Page d'aide sur l'homonymie Pour les articles homonymes, voir Stokes.
Léonard de Vinci : écoulement dans une fontaine

En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides[a]). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile. La cohérence mathématique de ces équations non linéaires n'est pas démontrée. Mais elles permettent souvent, par une résolution approchée, de proposer une modélisation de nombreux phénomènes, comme les courants océaniques et des mouvements des masses d'air de l'atmosphère pour les météorologistes, le comportement des gratte-ciel ou des ponts sous l'action du vent pour les architectes et ingénieurs, ou encore celui des avions, trains ou voitures à grande vitesse pour leurs bureaux d'études concepteurs, mais aussi le trivial écoulement de l'eau dans un tuyau et de nombreux autres phénomènes d'écoulement de divers fluides.

Ces équations sont nommées ainsi pour honorer les travaux de deux scientifiques du e siècle : le mathématicien et ingénieur des Ponts Henri Navier, qui le premier a introduit la notion de viscosité dans les équations d'Euler en 1823[1], et le physicien George Gabriel Stokes, qui a donné sa forme définitive à l'équation de conservation de la quantité de mouvement en 1845[2],[3]. Entretemps, divers scientifiques ont contribué à l'avancement du sujet : Augustin Louis Cauchy[4] et Siméon Denis Poisson en 1829[5] et Adhémar Barré de Saint-Venant en 1843.

Pour un gaz peu dense, il est possible de trouver une solution approchée de l’équation de Boltzmann, décrivant le comportement statistique des particules dans le cadre de la théorie cinétique des gaz. Ainsi, la méthode de Chapman-Enskog, due à Sydney Chapman et David Enskog en 1916 et 1917, permet de généraliser les équations de Navier-Stokes à un milieu comportant plusieurs espèces et de calculer l'expression des flux de masse (équations de Stefan-Maxwell incluant l'effet Soret), de quantité de mouvement (en donnant l'expression du tenseur de pression) et d'énergie en montrant l'existence de l'effet Dufour. Cette méthode permet également de calculer les coefficients de transport à partir des potentiels d'interaction moléculaires.

La résolution mathématiquement rigoureuse des équations de Navier-Stokes constitue l'un des problèmes du prix du millénaire.

Cet article décrit diverses variantes des équations valables pour des milieux de composition homogène, les problèmes liés à la diffusion et aux réactions chimiques n'y sont pas abordés[6].

Other Languages
Lëtzebuergesch: Navier-Stokes-Equatiounen